Advertisement
Review Article| Volume 44, ISSUE 1, P201-214, March 2023

Future of Lung Transplantation

Xenotransplantation and Bioengineering Lungs

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Chest Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Montgomery R.A.
        • Stern J.M.
        • Lonze B.E.
        • et al.
        Results of two cases of pig-to-human kidney xenotransplantation.
        N Engl J Med. 2022; 386: 1889-1898
        • Porrett P.M.
        • Orandi B.J.
        • Kumar V.
        • et al.
        First clinical-grade porcine kidney xenotransplant using a human decedent model.
        Am J Transplant. 2022; 22: 1037-1053
        • Griffith B.P.
        • Goerlich C.E.
        • Singh A.K.
        • et al.
        Genetically modified porcine-to-human cardiac xenotransplantation.
        N Engl J Med. 2022; 387: 35-44
        • Valapour M.
        • Lehr C.J.
        • Skeans M.A.
        • et al.
        OPTN/SRTR 2020 annual data report: lung.
        Am J Transplant. 2022; 22: 438-518
        • Cooper D.K.
        A brief history of cross-species organ transplantation.
        Proc (Bayl Univ Med Cent). 2012; 25: 49-57
        • Laird C.
        • Burdorf L.
        • Pierson 3rd, R.N.
        Lung xenotransplantation: a review.
        Curr Opin Organ Transplant. 2016; 21: 272-278
        • Bryant L.R.
        • Eiseman B.
        • Avery A.
        Studies of the porcine lung as an oxygenator for human blood.
        J Thorac Cardiovasc Surg. 1968; 55: 255-263
        • Schroeder C.
        • Allan J.S.
        • Nguyen B.N.
        • et al.
        Hyperacute rejection is attenuated in GalT knockout swine lungs perfused ex vivo with human blood.
        Transpl Proc. 2005; 37: 512-513
        • Burdorf L.
        • Azimzadeh A.M.
        • Pierson 3rd, R.N.
        Xenogeneic lung transplantation models.
        Methods Mol Biol. 2012; 885: 169-189
        • Schroeder C.
        • Guosheng G.S.
        • Price E.
        • et al.
        Hyperacute rejection of mouse lung by human blood: characterization of the model and the role of complement.
        Transplantation. 2003; 76: 755-760
        • Sadeghi A.M.
        • Laks H.
        • Drinkwater D.C.
        • et al.
        Heart-lung xenotransplantation in primates.
        J Heart Lung Transplant. 1991; 10: 442-447
        • Daggett C.W.
        • Yeatman M.
        • Lodge A.J.
        • et al.
        Total respiratory support from swine lungs in primate recipients.
        J Thorac Cardiovasc Surg. 1998; 115: 19-27
        • Hurst D.J.
        • Padilla L.A.
        • Cooper D.K.C.
        • et al.
        Factors influencing attitudes toward xenotransplantation clinical trials: a report of focus group studies.
        Xenotransplantation. 2021; 28: e12684
        • Hurst D.J.
        • Padilla L.A.
        • Cooper D.K.C.
        • et al.
        Scientific and psychosocial ethical considerations for initial clinical trials of kidney xenotransplantation.
        Xenotransplantation. 2022; 29: e12722
        • Mitchell C.
        • Lipps A.
        • Padilla L.
        • et al.
        Meta-analysis of public perception toward xenotransplantation.
        Xenotransplantation. 2020; 27: e12583
        • Knott G.J.
        • Doudna J.A.
        CRISPR-Cas guides the future of genetic engineering.
        Science. 2018; 361: 866-869
        • Wang K.
        • Ouyang H.
        • Xie Z.
        • et al.
        Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system.
        Scientific Rep. 2015; 5: 16623
        • Musunuru K.
        • Chadwick A.C.
        • Mizoguchi T.
        • et al.
        In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates.
        Nature. 2021; 593: 429-434
        • Zuccaro M.V.
        • Xu J.
        • Mitchell C.
        • et al.
        Allele-specific chromosome removal after Cas9 cleavage in human embryos.
        Cell. 2020; 183 (e15): 1650-1664
        • Liang P.
        • Xu Y.
        • Zhang X.
        • et al.
        CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
        Protein & Cell. 2015; 6: 363-372
        • Alanis-Lobato G.
        • Zohren J.
        • McCarthy A.
        • et al.
        Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos.
        Proc Natl Acad Sci. 2021; 118 (e2004832117)
        • Ryczek N.
        • Hryhorowicz M.
        • Zeyland J.
        • et al.
        CRISPR/Cas technology in pig-to-human xenotransplantation research.
        Int J Mol Sci. 2021; 22https://doi.org/10.3390/ijms22063196
        • Wilmut I.
        • Schnieke A.E.
        • McWhir J.
        • et al.
        Viable offspring derived from fetal and adult mammalian cells.
        Nature. 1997; 385: 810-813
        • Steptoe P.C.
        • Edwards R.G.
        Birth after the Reimplantation of a human embryo.
        Lancet. 1978; 312: 366
        • Burdorf L.
        • Laird C.T.
        • Harris D.G.
        • et al.
        Pig-to-baboon lung xenotransplantation: extended survival with targeted genetic modifications and pharmacologic treatments.
        Am J Transpl. 2022; 22: 28-45
        • Burdorf L.
        • Azimzadeh A.M.
        • Pierson 3rd, R.N.
        Progress and challenges in lung xenotransplantation: an update.
        Curr Opin Organ Transpl. 2018; 23: 621-627
        • Pierson 3rd, R.N.
        • Kaspar-König W.
        • Tew D.N.
        • et al.
        Profound pulmonary hypertension characteristic of pig lung rejection by human blood is mediated by xenoreactive antibody independent of complement.
        Transpl Proc. 1995; 27: 274
        • Cooper D.K.
        • Good A.H.
        • Koren E.
        • et al.
        Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man.
        Transpl Immunol. 1993; 1: 198-205
        • Basnet N.B.
        • Ide K.
        • Tahara H.
        • et al.
        Deficiency of N-glycolylneuraminic acid and Galalpha1-3Galbeta1-4GlcNAc epitopes in xenogeneic cells attenuates cytotoxicity of human natural antibodies.
        Xenotransplantation. 2010; 17: 440-448
        • Byrne G.W.D.Z.
        • Stalboerger P.
        • Kogelberg H.
        • et al.
        Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen.
        Xenotransplantation. 2014; 21: 543-554
        • Rood P.P.T.H.
        • Hara H.
        • Long C.
        • et al.
        Late onset of development of natural anti-nonGal antibodies in infant humans and baboons: implications for xenotransplantation in infants.
        Transpl Int. 2007; 20: 1050-1058
        • Lutz A.J.L.P.
        • Estrada J.L.
        • et al.
        Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation.
        Xenotransplantation. 2013; 20: 27-35
        • Estrada J.L.M.G.
        • Li P.
        • Adams A.
        • et al.
        Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes.
        Xenotransplantation. 2015; 22: 194-202
        • Leventhal J.R.
        • Dalmasso A.P.
        • Cromwell J.W.
        • et al.
        Prolongation of cardiac xenograft survival by depletion of complement.
        Transplantation. 1993; 55: 857-865
        • Lin C.C.
        • Cooper D.K.
        • Dorling A.
        Coagulation dysregulation as a barrier to xenotransplantation in the primate.
        Transpl Immunol. 2009; 21: 75-80
        • Robson S.C.
        • Cooper D.K.
        • d'Apice A.J.
        Disordered regulation of coagulation and platelet activation in xenotransplantation.
        Xenotransplantation. 2000; 7: 166-176
        • Siegel J.B.
        • Grey S.T.
        • Lesnikoski B.A.
        • et al.
        Xenogeneic endothelial cells activate human prothrombin.
        Transplantation. 1997; 64: 888-896
        • Lin C.C.
        • Chen D.
        • McVey J.H.
        • et al.
        Expression of tissue factor and initiation of clotting by human platelets and monocytes after incubation with porcine endothelial cells.
        Transplantation. 2008; 86: 702-709
        • Kopp C.W.
        • Grey S.T.
        • Siegel J.B.
        • et al.
        Expression of human thrombomodulin cofactor activity in porcine endothelial cells.
        Transplantation. 1998; 66: 244-251
        • Roussel J.C.
        • Moran C.J.
        • Salvaris E.J.
        • et al.
        Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI.
        Am J Transpl. 2008; 8: 1101-1112
        • Lawson J.H.
        • Daniels L.J.
        • Platt J.L.
        The evaluation of thrombomodulin activity in porcine to human xenotransplantation.
        Transplant Proc. 1997; 29: 884-885
        • Schulte am Esch J.
        • Rogiers X.
        • Robson S.C.
        Molecular incompatibilities in hemostasis between swine and men--impact on xenografting.
        Ann Transplant. 2001; 6: 12-16
        • Schulte Am Esch J. 2nd RS.
        • Knoefel W.T.
        • Hosch S.B.
        • et al.
        O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors.
        Xenotransplantation. 2005; 12: 30-37
        • Mazzucato M.
        • De Marco L.
        • Pradella P.
        • et al.
        Porcine von Willebrand factor binding to human platelet GPIb induces transmembrane calcium influx.
        Thrombosis and haemostasis. 1996; 75: 655-660
        • Kaur S.
        • Isenberg J.S.
        • Roberts D.D.
        CD47 (Cluster of Differentiation 47).
        Atlas Genet Cytogenet Oncol Haematol. 2021; 25: 83-102
        • Martínez-Sanz P.
        • Hoogendijk A.J.
        • Verkuijlen P.J.J.H.
        • et al.
        CD47-SIRPα checkpoint inhibition enhances neutrophil-mediated killing of dinutuximab-opsonized neuroblastoma cells.
        Cancers (Basel). 2021; 13: 4261
        • Allard B.
        • Longhi M.S.
        • Robson S.C.
        • et al.
        The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets.
        Immunol Rev. 2017; 276: 121-144
        • Antonioli L.
        • Pacher P.
        • Vizi E.S.
        • et al.
        CD39 and CD73 in immunity and inflammation.
        Trends Mol Med. 2013; 19: 355-367
        • Knapp K.Z.M.
        • Zebisch M.
        • Pippel J.
        • et al.
        Crystal structure of the human ecto-5’-nucleotidase (CD73): insights into the regulation of purinergic signaling.
        Structure. 2012; 20: 2161-2173
        • Watzl C.
        How to trigger a killer: modulation of natural killer cell reactivity on many levels.
        Adv Immunol. 2014; 124: 137-170
        • Puga Yung G.
        • Bongoni A.K.
        • Pradier A.
        • et al.
        Release of pig leukocytes and reduced human NK cell recruitment during ex vivo perfusion of HLA-E/human CD46 double-transgenic pig limbs with human blood.
        Xenotransplantation. 2018; 25
        • Forte P.
        • Baumann B.C.
        • Schneider M.K.
        • et al.
        HLA-Cw4 expression on porcine endothelial cells reduces cytotoxicity and adhesion mediated by CD158a+ human NK cells.
        Xenotransplantation. 2009; 16: 19-26
        • Macchiarini P.
        • Mazmanian G.M.
        • Oriol R.
        • et al.
        Ex vivo lung model of pig-to-human hyperacute xenograft rejection.
        J Thorac Cardiovasc Surg. 1997; 114: 315-325
        • Pierson 3rd, R.N.
        • Tew D.N.
        • Konig W.K.
        • et al.
        Pig lungs are susceptible to hyperacute rejection by human blood in a working ex vivo heart-lung model.
        Transpl Proc. 1994; 26: 1318
        • Macchiarini P.
        • Oriol R.
        • Azimzadeh A.
        • et al.
        Evidence of human non-alpha-galactosyl antibodies involved in the hyperacute rejection of pig lungs and their removal by pig organ perfusion.
        J Thorac Cardiovasc Surg. 1998; 116: 831-843
        • Pfeiffer S.
        • Zorn 3rd, G.L.
        • Kelishadi S.
        • et al.
        Role of anti-Gal alpha13Gal and anti-platelet antibodies in hyperacute rejection of pig lung by human blood.
        Annals of thoracic surgery. 2001; 72 (discussion 1690): 1681-1689
        • Pierson 3rd, R.N.
        • Kasper-Konig W.
        • Tew D.N.
        • et al.
        Hyperacute lung rejection in a pig-to-human transplant model: the role of anti-pig antibody and complement.
        Transplant. 1997; 63: 594-603
        • Blum M.G.
        • Collins B.J.
        • Chang A.C.
        • et al.
        Complement inhibition by FUT-175 and K76-COOH in a pig-to-human lung xenotransplant model.
        Xenotransplantation. 1998; 5: 35-43
        • Macchiarini P.
        • Oriol R.
        • Azimzadeh A.
        • et al.
        Characterization of a pig-to-goat orthotopic lung xenotransplantation model to study beyond hyperacute rejection.
        J Thorac Cardiovasc Surg. 1999; 118: 805-814
        • Nguyen B.N.
        • Azimzadeh A.M.
        • Schroeder C.
        • et al.
        Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection.
        Xenotransplantation. 2011; 18: 94-107
        • Nguyen B.N.
        • Azimzadeh A.M.
        • Zhang T.
        • et al.
        Life-supporting function of genetically modified swine lungs in baboons.
        J Thorac Cardiovasc Surg. 2007; 133: 1354-1363
        • Pierson 3rd, R.N.
        • Pino-Chavez G.
        • Young V.K.
        • et al.
        Expression of human decay accelerating factor may protect pig lung from hyperacute rejection by human blood.
        J Heart Lung Transpl. 1997; 16: 231-239
        • White D.J.G.
        • Langford G.A.
        • Cozzi E.
        • et al.
        Production of pigs transgenic for human DAF: a strategy for xenotransplantation.
        Xenotransplantation. 1995; 2: 213-217
        • Burdorf L.
        • Stoddard T.
        • Zhang T.
        • et al.
        Expression of human CD46 modulates inflammation associated with GalTKO lung xenograft injury.
        Am J Transpl. 2014; 14: 1084-1095
        • Pfeiffer S.
        • Zorn 3rd, G.L.
        • Zhang J.P.
        • et al.
        Hyperacute lung rejection in the pig-to-human model. III. Platelet receptor inhibitors synergistically modulate complement activation and lung injury.
        Transplantation. 2003; 75: 953-959
        • Burdorf L.
        • Riner A.
        • Rybak E.
        • et al.
        Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor.
        Xenotransplantation. 2016; 23: 222-236
        • Burdorf L.
        • Harris D.
        • Dahi S.
        • et al.
        Thromboxane and histamine mediate PVR elevation during xenogeneic pig lung perfusion with human blood.
        Xenotransplantation. 2019; 26: e12458
        • Connolly M.R.
        • Kuravi K.
        • Burdorf L.
        • et al.
        Humanized von Willebrand factor reduces platelet sequestration in ex vivo and in vivo xenotransplant models.
        Xenotransplantation. 2021; 28: e12712
        • Laird C.T.
        • Burdorf L.
        • French B.M.
        • et al.
        Transgenic expression of human leukocyte antigen-E attenuates GalKO.hCD46 porcine lung xenograft injury.
        Xenotransplantation. 2017; 24
        • Watanabe H.
        • Sahara H.
        • Nomura S.
        • et al.
        GalT-KO pig lungs are highly susceptible to acute vascular rejection in baboons, which may be mitigated by transgenic expression of hCD47 on porcine blood vessels.
        Xenotransplantation. 2018; 25: e12391
        • Miura S.
        • Habibabady Z.A.
        • Pollok F.
        • et al.
        Effects of human TFPI and CD47 expression and selectin and integrin inhibition during GalTKO.hCD46 pig lung perfusion with human blood.
        Xenotransplantation. 2022; 29: e12725
        • Judge E.P.
        • Hughes J.M.L.
        • Egan J.J.
        • et al.
        Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.
        Am J Respir Cell Mol Biol. 2014; 51: 334-343
        • Schmidt F.
        • McGiffin D.C.
        • Zorn G.
        • et al.
        Management of congenital abnormalities of the donor lung.
        Ann Thorac Surg. 2001; 72: 935-937
        • Hendriks J.M.H.
        • Deblier I.
        • Dieriks B.
        • et al.
        Successful bilateral lung transplant from a donor with a tracheal right upper lobe bronchus.
        J Thorac Cardiovasc Surg. 2009; 137: 771-773
        • Mendogni P.
        • Tosi D.
        • Rosso L.
        • et al.
        Lung transplant from donor with tracheal bronchus: case report and literature review.
        Transplant Proc. 2019; 51: 239-241
        • Gallifant J.
        • Cronin J.N.
        • Formenti F.
        Quantification of lobar gas exchange: a proof-of-concept study in pigs.
        Br J Anaesth. 2021; 127: e55-e58
        • Azad M.K.
        • Mansy H.A.
        • Gamage P.T.
        Geometric features of pig airways using computed tomography.
        Physiol Rep. 2016; 4https://doi.org/10.14814/phy2.12995
        • Noble P.B.
        • McLaughlin R.A.
        • West A.R.
        • et al.
        Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography.
        Respir Res. 2010; 11: 9
        • Brown V.R.
        • Bowen R.A.
        • Bosco-Lauth A.M.
        Zoonotic pathogens from feral swine that pose a significant threat to public health.
        Transboundary Emerging Dis. 2018; 65: 649-659
        • U.S. Department of Health and Human Services FaDA
        • Center for Biologics Evaluation and Research
        Source animal, product, preclinical, and clinical issues concerning the use of xenotransplantation products in humans.
        • Boneva R.S.
        • Folks T.M.
        • Chapman L.E.
        Infectious disease issues in xenotransplantation.
        Clin Microbiol Rev. 2001; 14: 1-14
      1. PHS guideline on infectious disease issues in xenotransplantation. 2001
        • Wilson C.A.
        Endogenous retroviruses.
        Cell Mol Life Sci. 2008/11/01 2008; 65: 3399-3412
        • Patience C.
        • Takeuchi Y.
        • Weiss R.A.
        Infection of human cells by an endogenous retrovirus of pigs.
        Nat Med. 1997; 3: 282-286
        • Le Tissier P.
        • Stoye J.P.
        • Takeuchi Y.
        • et al.
        Two sets of human-tropic pig retrovirus.
        Nature. 1997; 389: 681-682
        • Takeuchi Y.
        • Patience C.
        • Magre S.
        • et al.
        Host range and interference studies of three classes of pig endogenous retrovirus.
        J Virol. 1998; 72: 9986-9991
        • McGregor C.G.A.
        • Takeuchi Y.
        • Scobie L.
        • et al.
        PERVading strategies and infectious risk for clinical xenotransplantation.
        Xenotransplantation. 2018; 25: e12402
        • Martin U.
        • Kiessig V.
        • Blusch J.H.
        • et al.
        Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells.
        Lancet. 1998; 352: 692-694
        • Wilson C.A.
        • Wong S.
        • Muller J.
        • et al.
        Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells.
        J Virol. 1998; 72: 3082-3087
        • Niu D.
        • Wei H.-J.
        • Lin L.
        • et al.
        Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9.
        Science. 2017; 357: 1303-1307
        • Denner J.
        • Tönjes R.R.
        Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses.
        Clin Microbiol Rev. 2012; 25: 318-343
        • Heneine W.
        • Tibell A.
        • Switzer W.M.
        • et al.
        No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts.
        Lancet. 1998; 352: 695-699
        • Garkavenko O.
        • Croxson M.C.
        • Irgang M.
        • et al.
        Monitoring for presence of potentially xenotic viruses in recipients of pig islet xenotransplantation.
        J Clin Microbiol. 2004; 42: 5353-5356
        • Irgang M.
        • Laue C.
        • Velten F.
        • et al.
        No evidence for PERV release by islet cells from German landrace pigs.
        Ann Transpl. 2008; 13: 59-66
        • Moennig V.
        • Frank H.
        • Hunsmann G.
        • et al.
        C-type particles produced by a permanent cell line from a leukemic pig. II. Physical, chemical, and serological characterization of the particles.
        Virol. 1974; 57: 179-188
        • Frazier M.E.
        Evidence for retrovirus in miniature swine with radiation-induced leukemia or metaplasia.
        Arch Virol. 1985; 83: 83-97
        • Salavatiha Z.
        • Soleimani-Jelodar R.
        • Jalilvand S.
        The role of endogenous retroviruses-K in human cancer.
        Rev Med Virol. 2020; 30: e2142
        • Denner J.
        • Young P.R.
        Koala retroviruses: characterization and impact on the life of koalas.
        Retrovirology. 2013; 10: 108
        • Tacke S.J.
        • Kurth R.
        • Denner J.
        Porcine endogenous retroviruses inhibit human immune cell function: risk for xenotransplantation?.
        Virology. 2000; 268: 87-93
        • Łopata K.
        • Wojdas E.
        • Nowak R.
        • et al.
        Porcine Endogenous Retrovirus (PERV) – Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Review.
        Frontiers in Microbiology. 2018; 9
        • Denner J.
        Can antiretroviral drugs Be used to treat porcine endogenous retrovirus (PERV) infection after xenotransplantation?.
        Viruses. 2017; 9: 213
        • Yang L.
        • Güell M.
        • Niu D.
        • et al.
        Genome-wide inactivation of porcine endogenous retroviruses (PERVs).
        Sci. 2015; 350: 1101-1104
        • Fishman J.A.
        • Rubin R.H.
        Infection in organ-transplant recipients.
        N Engl J Med. 1998; 338: 1741-1751
        • Herrera S.
        • Khan B.
        • Singer L.G.
        • et al.
        Extending cytomegalovirus prophylaxis in high-risk (D+/R−) lung transplant recipients from 6 to 9 months reduces cytomegalovirus disease: a retrospective study.
        Transpl Infect Dis. 2020; 22: e13277
        • Emery V.C.
        • Atkins M.C.
        • Bowen E.F.
        • et al.
        Interactions between β-herpesviruses and human immunodeficiency virus in vivo: evidence for increased human immunodeficiency viral load in the presence of human herpesvirus 6.
        J Med Virol. 1999; 57: 278-282
        • Eliassen E.
        • Lum E.
        • Pritchett J.
        • et al.
        Human herpesvirus 6 and malignancy: a review.
        Front Oncol. 2018; 8: 512
        • Clark D.A.
        • Fryer J.F.L.
        • Tucker A.W.
        • et al.
        Porcine cytomegalovirus in pigs being bred for xenograft organs: progress towards control.
        Xenotransplantation. 2003; 10: 142-148
        • Egerer S.
        • Fiebig U.
        • Kessler B.
        • et al.
        Early weaning completely eliminates porcine cytomegalovirus from a newly established pig donor facility for xenotransplantation.
        Xenotransplantation. 2018; 25: e12449
        • Denner J.
        • Längin M.
        • Reichart B.
        • et al.
        Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival.
        Scientific Rep. 2020; 10: 17531
        • Yamada K.
        • Tasaki M.
        • Sekijima M.
        • et al.
        Porcine cytomegalovirus infection is associated with early rejection of kidney grafts in a pig to baboon xenotransplantation model.
        Transplantation. 2014; 98: 411-418
        • Mueller N.J.
        • Kuwaki K.
        • Dor F.J.M.F.
        • et al.
        Reduction of consumptive coagulopathy using porcine cytomegalovirus-free cardiac porcine grafts in pig-to-primate xenotransplantation.
        Transplantation. 2004; 78: 1449-1453
        • Fishman J.A.
        Prevention of infection in xenotransplantation: designated pathogen-free swine in the safety equation.
        Xenotransplantation. 2020; 27: e12595
      2. US. Department Of health and human, services., organ transplantation:, OPTN., &, SRTR., Annual data report 2020.

        • Langer R.
        • Vacanti J.P.
        Tissue engineering.
        Science. 1993; 260: 920-926
        • Cortez Ghio S.
        • Larouche D.
        • Doucet E.J.
        • et al.
        The role of cultured autologous bilayered skin substitutes as epithelial stem cell niches after grafting: a systematic review of clinical studies.
        Burns Open. 2021; 5: 56-66
        • Matsuzaki Y.
        • John K.
        • Shoji T.
        • et al.
        The evolution of tissue engineered vascular graft technologies: from preclinical trials to advancing patient care.
        Appl Sci (Basel). 2019; 9https://doi.org/10.3390/app9071274
        • Atala A.
        • Bauer S.B.
        • Soker S.
        • et al.
        Tissue-engineered autologous bladders for patients needing cystoplasty.
        Lancet. 2006; 367: 1241-1246
        • Franks T.J.
        • Colby T.V.
        • Travis W.D.
        • et al.
        Resident cellular components of the human lung.
        Proc Am Thorac Soc. 2008; 5: 763-766
        • Nichols J.E.
        • Francesca S.L.
        • Niles J.A.
        • et al.
        Production and transplantation of bioengineered lung into a large-animal model.
        Sci Translational Med. 2018; 10: eaao3926
      3. United therapeutics provides an update on its organ printing programs. 2022 (Accessed)
        • Pierson R.N.
        Progress toward pig-to-human xenotransplantation.
        N Engl J Med. 2022; 386: 1871-1873
        • Pierson R.N.
        • Fishman J.A.
        • Lewis G.D.
        • et al.
        Progress toward cardiac xenotransplantation.
        Circulation. 2020; 142: 1389-1398
        • Ott H.C.
        • Clippinger B.
        • Conrad C.
        • et al.
        Regeneration and orthotopic transplantation of a bioartificial lung.
        Nat Med. 2010; 16: 927-933
        • Doi R.
        • Tsuchiya T.
        • Mitsutake N.
        • et al.
        Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells.
        Sci Rep. 2017; 7: 8447
        • Petersen T.H.
        • Calle E.A.
        • Zhao L.
        • et al.
        Tissue-engineered lungs for in vivo implantation.
        Science. 2010; 329: 538-541
        • Song J.J.
        • Kim S.S.
        • Liu Z.
        • et al.
        Enhanced in vivo function of bioartificial lungs in rats.
        Ann Thorac Surg. 2011; 92 ([discussion: 1005–6]): 998-1005
        • Gilpin S.E.
        • Ren X.
        • Okamoto T.
        • et al.
        Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix.
        Ann Thorac Surg. 2014; 98 ([discussion: 1729]): 1721-1729
        • Ren X.
        • Moser P.T.
        • Gilpin S.E.
        • et al.
        Engineering pulmonary vasculature in decellularized rat and human lungs.
        Nat Biotechnol. 2015; 33: 1097-1102
        • Obata T.
        • Tsuchiya T.
        • Akita S.
        • et al.
        Utilization of natural detergent potassium laurate for decellularization in lung bioengineering.
        Tissue Eng Part C Methods. 2019; 25: 459-471
        • Jensen T.
        • Roszell B.
        • Zang F.
        • et al.
        A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation.
        Tissue Eng Part C Methods. 2012; 18: 632-646
        • Yanagiya M.
        • Kitano K.
        • Yotsumoto T.
        • et al.
        Transplantation of bioengineered lungs created from recipient-derived cells into a large animal model.
        Semin Thorac Cardiovasc Surg. 2021; 33: 263-271
        • Zhou H.
        • Kitano K.
        • Ren X.
        • et al.
        Bioengineering human lung grafts on porcine matrix.
        Ann Surg. 2018; 267: 590-598
        • Kitano K.
        • Ohata K.
        • Economopoulos K.P.
        • et al.
        Orthotopic transplantation of human bioartificial lung grafts in a porcine model: a feasibility study.
        Semin Thorac Cardiovasc Surg. 2022; 34: 752-759
        • Monteiro A.
        • Smith R.L.
        Bronchial tree architecture in mammals of diverse body mass.
        Int J Morphol. 2014; 32: 312-316