Advertisement
Review Article| Volume 44, ISSUE 1, P121-136, March 2023

Conventional and Novel Approaches to Immunosuppression in Lung Transplantation

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Chest Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murphy J.B.
        Heteroplastic tissue grafting effected through roentgen-ray lymphoid destruction.
        JAMA. 1914; LXII: 1459
        • Silverstein A.M.
        The lymphocyte in immunology: from James B. Murphy to James L. Gowans.
        Nat Immunol. 2001; 2: 569-571
        • Calne R.Y.
        The rejection of renal homografts. Inhibition in dogs by 6-mercaptopurine.
        Lancet. 1960; 1: 417-418
        • Schwartz R.
        • Dameshek W.
        The effects of 6-mercaptopurine on homograft reactions.
        J Clin Invest. 1960; 39: 952-958
        • Murray J.E.
        • Merrill J.P.
        • Harrison J.H.
        • et al.
        Prolonged survival of human-kidney homografts by immunosuppressive drug therapy.
        N Engl J Med. 1963; 268: 1315-1323
        • Starzl T.E.
        • Marchioro T.L.
        • Waddell W.R.
        The reversal of rejection in human renal homografts with subsequent development of homograft tolerance.
        Surg Gynecol Obstet. 1963; 117: 385-395
        • Borel J.F.
        • Feurer C.
        • Gubler H.U.
        • et al.
        Biological effects of cyclosporine A: a new antilymphocytic agent.
        Agents Actions. 1976; 6: 468-475
        • Calne R.Y.
        • Rolles K.
        • White D.J.
        • et al.
        Cyclosporine A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers.
        Lancet. 1979; 2: 1033-1036
        • Calne R.Y.
        • White D.J.
        • Evans D.B.
        • et al.
        Cyclosporine A in cadaveric organ transplantation.
        Br Med J (Clin Res Ed. 1981; 282: 934-936
        • Starzl T.E.
        • Weil 3rd, R.
        • Iwatsuki S.
        • et al.
        The use of cyclosporine A and prednisone in cadaver kidney transplantation.
        Surg Gynecol Obstet. 1980; 151: 17-26
        • Starzl T.E.
        • Klintmalm G.B.
        • Porter K.A.
        • et al.
        Liver transplantation with use of cyclosporine A and prednisone.
        N Engl J Med. 1981; 305: 266-269
        • Starzl T.E.
        • Todo S.
        • Fung J.
        • et al.
        FK 506 for liver, kidney, and pancreas transplantation.
        Lancet. 1989; 2: 1000-1004
        • Reitz B.A.
        • Wallwork J.
        • Hunt S.A.
        • et al.
        Heart lung transplantation: successful therapy for patients with pulmonary vascular disease.
        N Engl J Med. 1982; 306: 557
        • Cooper J.D.
        • Pearson F.G.
        • Patterson G.A.
        • et al.
        Technique of successful lung transplantation in humans.
        J Thorac Cardiovasc Surg. 1987; 93: 173
        • Witt C.A.
        • Puri V.
        • Gelman A.E.
        • et al.
        Lung transplant immunosuppression - time for a new approach?.
        Expert Rev Clin Immunol. 2014; 10: 1419-1421
        • Shepherd H.M.
        • Gauthier J.M.
        • Kreisel D.
        Tolerance, immunosuppression, and immune modulation: impacts on lung allograft survival.
        Curr Opin Organ Transpl. 2021; 26: 328-332
        • Ingulli E.
        Mechanism of cellular rejection in transplantation.
        Pediatr Nephrol. 2010; 25: 61-74
        • Ng C.Y.
        • Madsen J.C.
        • Rosengard B.R.
        • et al.
        Immunosuppression for lung transplantation.
        Front Biosci (Landmark Ed. 2009; 14: 1627-1641
        • Ohm B.
        • Jungraithmayr W.
        B cell immunity in lung transplant rejection - effector mechanisms and therapeutic implications.
        Front Immunol. 2022; 13: 845867
        • Conlon T.M.
        • Saeb-Parsy K.
        • Cole J.L.
        • et al.
        Germinal center Alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells.
        J Immunol. 2012; 188: 2643-2652
        • Walters G.D.
        • Vinuesa C.G.
        T follicular helper cells in transplantation.
        Transplantation. 2016; 100: 1650-1655
        • Wood K.J.
        • Bushell A.
        • Hester J.
        Regulatory immune cells in transplantation.
        Nat Rev Immunol. 2012; 12: 417-430
        • Siu J.H.Y.
        • Surendrakumar V.
        • Richards J.A.
        • et al.
        T cell allorecognition pathways in solid organ transplantation.
        Front Immunol. 2018; 9: 2548
        • Halloran P.F.
        • Venner J.M.
        • Madill-Thomsen K.S.
        • et al.
        Review: the transcripts associated with organ allograft rejection.
        Am J Transpl. 2018; 18: 785-795
        • Shi T.
        • Roskin K.
        • Baker B.M.
        • et al.
        Advanced genomics-based approaches for defining allograft rejection with single cell resolution.
        Front Immunol. 2021; 12: 750754
        • Benazzo A.
        • Bozzini S.
        • Auner S.
        • et al.
        Differential expression of circulating miRNAs after alemtuzumab induction therapy in lung transplantation.
        Sci Rep. 2022; 12: 7072
        • Chambers D.C.
        • Cherikh W.S.
        • Harhay M.O.
        • et al.
        The international thoracic organ transplant registry of the international society for heart and lung transplantation: thirty-sixth adult lung and heart-lung transplantation report-2019; focus theme: donor and recipient size match.
        J Heart Lung Transpl. 2019; 38: 1042-1055
        • Chambers D.C.
        • Cherikh W.S.
        • Goldfarb S.B.
        • et al.
        The international thoracic organ transplant registry of the international society for heart and lung transplantation: thirty-fifth adult lung and heart-lung transplant report-2018; focus theme: multiorgan transplantation.
        J Heart Lung Transpl. 2018; 37: 1169-1183
        • Magliocca J.F.
        • Knechtle S.J.
        The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation.
        Transpl Int. 2006; 19: 705-714
        • Ippoliti G.
        • Lucioni M.
        • Leonardi G.
        • et al.
        Immunomodulation with rabbit anti-thymocyte globulin in solid organ transplantation.
        World J Transpl. 2015; 5: 261-266
        • Hachem R.R.
        • Edwards L.B.
        • Yusen R.D.
        • et al.
        The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry.
        Clin Transpl. 2008; 22: 603-608
        • Furuya Y.
        • Jayarajan S.N.
        • Taghavi S.
        • et al.
        The impact of Alemtuzumab and Basliliximab Induction on patient survival and time to bronchitis obliterates syndrome in double lung transplantation recipients.
        Am J Transpl. 2016; 16: 2334-2341
        • Jaksch P.
        • Ankersmit J.
        • Scheed A.
        • et al.
        Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study.
        Am J Transpl. 2014; 14: 1839-1845
        • Shyu S.
        • Dew M.A.
        • Pilewski J.M.
        • et al.
        Five-year outcomes with alemtuzumab induction after lung transplantation.
        J Heart Lung Transpl. 2011; 30: 743-754
        • Morris P.J.
        • Russell N.K.
        Alemtuzumab (Campath-1H): a systematic review in organ transplantation.
        Transplantation. 2006; 81: 1361-1367
        • Peleg A.Y.
        • Husain S.
        • Kwak E.J.
        • et al.
        Opportunistic infections in 547 organ transplant recipients receiving alemtuzumab, a humanized monoclonal CD-52 antibody.
        Clin Infect Dis. 2007; 44: 204-212
        • Penninga L.
        • Møller C.H.
        • Penninga E.I.
        • et al.
        Antibody induction therapy for lung transplant recipients.
        Cochrane Database Syst Rev. 2013; 2013: CD008927
        • Snell G.I.
        • Westall G.P.
        • Levvey B.J.
        • et al.
        A randomized, double-blind, placebo-controlled, multicenter study of rabbit ATG in the prophylaxis of acute rejection in lung transplantation.
        Am J Transpl. 2014; 14: 1191-1198
        • Fan Y.
        • Xiao Y.B.
        • Weng Y.G.
        Tacrolimus versus cyclosporine for adult lung transplant recipients: a meta-analysis.
        Transpl Proc. 2009; 41: 1821-1824
        • Treede H.
        • Glanville A.R.
        • Klepetko W.
        • et al.
        Tacrolimus and cyclosporinee have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation.
        J Heart Lung Transpl. 2012; 31: 797-804
        • Collin C.
        • Boussaud V.
        • Lefeuvre S.
        • et al.
        Sublingual tacrolimus as an alternative to intravenous route in patients with thoracic transplant: a retrospective study.
        Transpl Proc. 2010; 42: 4331-4337
        • Beckebaum S.
        • Iacob S.
        • Sweid D.
        • et al.
        Efficacy, safety, and immunosuppressant adherence in stable liver transplant patients converted from a twice-daily tacrolimus-based regimen to once-daily tacrolimus extended-release formulation.
        Transpl Int. 2011; 24: 666-675
        • Doesch A.O.
        • Mueller S.
        • Akyol C.
        • et al.
        Increased adherence eight months after switch from twice daily calcineurin inhibitor based treatment to once daily modified released tacrolimus in heart transplantation.
        Drug Des Devel Ther. 2013; 7: 1253-1258
        • Kolonko A.
        • Chudek J.
        • Wiecek A.
        Improved kidney graft function after conversion from twice daily tacrolimus to a once daily prolonged-release formulation.
        Transpl Proc. 2011; 43: 2950-2953
        • Wagner M.
        • Earley A.K.
        • Webster A.C.
        • et al.
        Mycophenolic acid versus azathioprine as primary immunosuppression for kidney transplant recipients.
        Cochrane Database Syst Rev. 2015; 3: CD007746
        • Palmer S.M.
        • Baz M.A.
        • Sanders L.
        • et al.
        Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection.
        Transplantation. 2001; 71: 1772-1776
        • McNeil K.
        • Glanville A.R.
        • Wahlers T.
        • et al.
        Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients.
        Transplantation. 2006; 81: 998-1003
        • Vos M.
        • Plasmeijer E.I.
        • van Bemmel B.C.
        • et al.
        Azathioprine to mycophenolate mofetil transition and risk of squamous cell carcinoma after lung transplantation.
        J Heart Lung Transpl. 2018; 37: 853-859
        • Sabbatini M.
        • Capone D.
        • Gallo R.
        • et al.
        EC-MPS permits lower gastrointestinal symptom burden despite higher MPA exposure in patients with severe MMF-related gastrointestinal side-effects.
        Fundam Clin Pharmacol. 2009; 23: 617-624
        • Barnes P.J.
        How corticosteroids control inflammation: quintiles prize lecture 2005.
        Br J Pharmacol. 2006; 148: 245-254
        • Bergmann T.K.
        • Barraclough K.A.
        • Lee K.J.
        • et al.
        Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation.
        Clin Pharmacokinet. 2012; 51: 711-741
        • Sehgal S.N.
        Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression.
        Clin Biochem. 1998; 31: 335-340
        • Bhorade S.
        • Ahya V.N.
        • Baz M.A.
        • et al.
        Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation.
        Am J Respir Crit Care Med. 2011; 183: 379-387
        • Snell G.I.
        • Valentine V.G.
        • Vitulo P.
        • et al.
        Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial.
        Am J Transpl. 2006; 6: 169-177
        • Strueber M.
        • Warnecke G.
        • Fuge J.
        • et al.
        Everolimus versus mycophenolate mofetil de novo after lung transplantation: a prospective, randomized, open-label trial.
        Am J Transpl. 2016; 16: 3171-3180
        • Wijesinha M.
        • Hirshon J.M.
        • Terrin M.
        • et al.
        Survival associated with sirolimus plus tacrolimus maintenance without induction therapy compared with standard immunosuppression after lung transplant.
        JAMA Netw Open. 2019; 2: e1910297
        • Knoll G.A.
        • Kokolo M.B.
        • Mallick R.
        • et al.
        Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data.
        BMJ. 2014; 349: g6679
        • Cullis B.
        • D'Souza R.
        • McCullagh P.
        • et al.
        Sirolimus-induced remission of posttransplantation lymphoproliferative disorder.
        Am J Kidney Dis. 2006; 47: e67-e72
        • Groetzner J.
        • Kur F.
        • Spelsberg F.
        • et al.
        Airway anastomosis complications in de novo lung transplantation with sirolimus-based immunosuppression.
        J Heart Lung Transpl. 2004; 23: 632-638
        • King-Biggs M.B.
        • Dunitz J.M.
        • Park S.J.
        • et al.
        Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation.
        Transplantation. 2003; 75: 1437-1443
        • Lopez P.
        • Kohler S.
        • Dimri S.
        Interstitial lung disease associated with mTOR inhibitors in solid organ transplant recipients: results from a large phase III clinical trial program of everolimus and review of the literature.
        J Transpl. 2014; 2014: 305931
        • Sánchez-Fructuoso A.I.
        • Ruiz J.C.
        • Pérez-Flores I.
        • et al.
        Comparative analysis of adverse events requiring suspension of mTOR inhibitors: everolimus versus sirolimus.
        Transpl Proc. 2010; 42: 3050-3052
        • de Pablo A.
        • Santos F.
        • Solé A.
        • et al.
        Recommendations on the use of everolimus in lung transplantation.
        Transpl Rev (Orlando). 2013; 27: 9-16
        • Meyer K.C.
        • Raghu G.
        • Verleden G.M.
        • et al.
        An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome.
        Eur Respir J. 2014; 44: 1479-1503
        • Benden C.
        • Haughton M.
        • Leonard S.
        • et al.
        Therapy options for chronic lung allograft dysfunction-bronchiolitis obliterans syndrome following first-line immunosuppressive strategies: a systematic review.
        J Heart Lung Transpl. 2017; 36: 921-933
        • Vos R.
        • Vanaudenaerde B.M.
        • Verleden S.E.
        • et al.
        Anti-inflammatory and immunomodulatory properties of azithromycin involved in treatment and prevention of chronic lung allograft rejection.
        Transplantation. 2012; 94: 101-109
        • Verleden G.M.
        • Dupont L.J.
        Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation.
        Transplantation. 2004; 77: 1465-1467
        • Verleden G.M.
        • Vanaudenaerde B.M.
        • Dupont L.J.
        • et al.
        Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome.
        Am J Respir Crit Care Med. 2006; 174: 566-570
        • Gottlieb J.
        • Szangolies J.
        • Koehnlein T.
        Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation.
        Transplantation. 2008; 85: 36-41
        • Vos R.
        • Vanaudenaerde B.M.
        • Ottevaere A.
        • et al.
        Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer?.
        J Heart Lung Transpl. 2010; 29: 1358-1368
        • Kingah P.L.
        • Muma G.
        • Soubani A.
        Azithromycin improves lung function in patients with post-lung transplant bronchiolitis obliterans syndrome: a meta-analysis.
        Clin Transpl. 2014; 28: 906-910
        • Jain R.
        • Hachem R.R.
        • Morrell M.R.
        • et al.
        Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome.
        J Heart Lung Transpl. 2010; 29: 531-537
        • Vos R.
        • Vanaudenaerde B.M.
        • Verleden S.E.
        • et al.
        A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation.
        Eur Respir J. 2011; 37: 164-172
        • Meloni F.
        • Cascina A.
        • Miserere S.
        • et al.
        Peripheral CD4(+)CD25(+) TREG cell counts and the response to extracorporeal photopheresis in lung transplant recipients.
        Transpl Proc. 2007; 39: 213-217
        • George J.
        • Gooden C.
        • Guo W.
        • et al.
        Role for CD4 CD25 T cells in inhibition of graft rejection by extracorporeal photopheresis.
        J Heart Lung Transpl. 2008; 27: 616-622
        • Gatza E.
        • Rogers C.E.
        • Clouthier S.G.
        • et al.
        Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells.
        Blood. 2008; 112: 1515-1521
        • Hachem R.
        • Corris P.
        Extracorporeal photopheresis for bronchiolitis obliterans syndrome after lung transplantation.
        Transplantation. 2018; 102: 1059-1065
        • Benden C.
        • Speich R.
        • Hofbauer G.F.
        • et al.
        Extracorporeal photopheresis after lung transplantation: a 10-year single-center experience.
        Transplantation. 2008; 86: 1625-1627.41
        • Morrell M.R.
        • Despotis G.J.
        • Lublin D.M.
        • et al.
        The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation.
        J Heart Lung Transpl. 2010; 29: 424-431
        • Jaksch P.
        • Scheed A.
        • Keplinger M.
        • et al.
        A prospective interventional study on the use of extracorporeal photopheresis in patients with bronchiolitis obliterans syndrome after lung transplantation.
        J Heart Lung Transpl. 2012; 31: 950-957
        • Del Fante C.
        • Scudeller L.
        • Oggionni T.
        • et al.
        Long-term off-line extracorporeal photochemotherapy in patients with chronic lung allograft rejection not responsive to conventional treatment: a 10-year single-centre analysis.
        Respiration. 2015; 90: 118-128
        • Pecoraro Y.
        • Carillo C.
        • Diso D.
        • et al.
        Efficacy of extracorporeal photopheresis in patients with bronchiolitis obliterans syndrome after lung transplantation.
        Transpl Proc. 2017; 49: 695-698
        • Greer M.
        • Dierich M.
        • De Wall C.
        • et al.
        Phenotyping established chronic lung allograft dysfunction predicts extracorporeal photopheresis response in lung transplant patients.
        Am J Transpl. 2013; 13: 911-918
        • Halperin E.C.
        Total lymphoid irradiation as an immunosuppressive agent for transplantation and the treatment of 'autoimmune' disease: a review.
        Clin Radiol. 1985; 36: 125-130
        • Diamond D.A.
        • Michalski J.M.
        • Lynch J.P.
        • et al.
        Efficacy of total lymphoid irradiation for chronic allograft rejection following bilateral lung transplantation.
        Int J Radiat Oncol Biol Phys. 1998; 41: 795
        • Fisher A.J.
        • Rutherford R.M.
        • Bozzino J.
        • et al.
        The safety and efficacy of total lymphoid irradiation in progressive bronchiolitis obliterans syndrome after lung transplantation.
        Am J Transpl. 2005; 5: 537-543
        • Verleden G.M.
        • Lievens Y.
        • Dupont L.J.
        • et al.
        Efficacy of total lymphoid irradiation in azithromycin nonresponsive chronic allograft rejection after lung transplantation.
        Transpl Proc. 2009; 41: 1816-1820
        • Miller R.
        • Hartog B.
        • Frewet J.
        • et al.
        Total lymphoid irradiation (TLI) for the management of bronchiolitis obliterans syndrome (BOS) post lung transplant: a single centre experience [abstract].
        J Heart Lung Transpl. 2016; 35: 70
        • Lebeer M.
        • Kaes J.
        • Lambrech M.
        • et al.
        Total lymphoid irradiation in progressive bronchiolitis obliterans syndrome after lung transplantation: a single-center experience and review of literature.
        Transpl Int. 2020; 33: 216-228
        • Ruttens D.
        • Verleden S.E.
        • Demeyer H.
        • et al.
        Montelukast for bronchiolitis obliterans syndrome after lung transplantation: a randomized controlled trial.
        PLoS One. 2018; 13: e0193564
        • Vos R.
        • Eynde R.V.
        • Ruttens D.
        • et al.
        Montelukast in chronic lung allograft dysfunction after lung transplantation.
        J Heart Lung Transpl. 2019; 38: 516-527
        • Iacono A.T.
        • Keenan R.J.
        • Duncan S.R.
        • et al.
        Aerosolized cyclosporine in lung recipients with refractory chronic rejection.
        Am J Respir Crit Care Med. 1996; 153: 1451-1455
        • Iacono A.T.
        • Corcoran T.E.
        • Griffith B.P.
        • et al.
        Aerosol cyclosporine therapy in lung transplant recipients with bronchiolitis obliterans.
        Eur Respir J. 2004; 23: 384-390
        • Iacono A.T.
        • Johnson B.A.
        • Grgurich W.F.
        • et al.
        A randomized trial of inhaled cyclosporine in lung-transplant recipients.
        N Engl J Med. 2006; 354: 141-150
        • Neurohr C.
        • Kneidinger N.
        • Ghiani A.
        • et al.
        A randomized controlled trial of liposomal cyclosporine A for inhalation in the prevention of bronchiolitis obliterans syndrome following lung transplantation.
        Am J Transpl. 2022; 22: 222-229
        • Iacono A.
        • Wijesinha M.
        • Rajagopal K.
        • et al.
        A randomised single-centre trial of inhaled liposomal cyclosporine for bronchiolitis obliterans syndrome post-lung transplantation.
        ERJ Open Res. 2019; 5: 00167
        • Deuse T.
        • Blankenberg F.
        • Haddad M.
        • et al.
        Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation.
        Am J Respir Cell Mol Biol. 2010; 43: 403-412
        • Sahakijpijarn S.
        • Beg M.
        • Levine S.M.
        • et al.
        A safety and tolerability study of thin film freeze-dried tacrolimus for local pulmonary drug delivery in human subjects.
        Pharmaceutics. 2021; 13: 717
        • Hayes D.
        • Zwischenberger J.B.
        • Mansour H.M.
        Aerosolized tacrolimus: a case report in a lung transplant recipient.
        Transpl Proc. 2010; 42: 3876-3879
        • Li Y.
        • Gottlieb J.
        • Ma D.
        • et al.
        Graft-protective effects of the HMG-CoA reductase inhibitor pravastatin after lung transplantation--a propensity score analysis with 23 years of follow-up.
        Transplantation. 2011; 92: 486-492
        • Szczepanik A.
        • Hulbert A.
        • Lee H.J.
        • et al.
        Effect of HMG CoA reductase inhibitors on the development of chronic lung allograft dysfunction.
        Clin Transpl. 2018; 32https://doi.org/10.1111/ctr.13156
        • Veit T.
        • Leuschner G.
        • Sisic A.
        • et al.
        Pirfenidone exerts beneficial effects in patients with IPF undergoing single lung transplantation.
        Am J Transpl. 2019; 19: 2358-2365
        • Ihle F.
        • von Wulffen W.
        • Neurohr C.
        Pirfenidone: a potential therapy for progressive lung allograft dysfunction?.
        J Heart Lung Transpl. 2013; 32: 574-575
        • Vos R.
        • Verleden S.E.
        • Ruttens D.
        • et al.
        Pirfenidone: a potential new therapy for restrictive allograft syndrome?.
        Am J Transpl. 2013; 13: 3035-3040
        • Vos R.
        • Wuyts W.A.
        • Gheysens O.
        • et al.
        Pirfenidone in restrictive allograft syndrome after lung transplantation: a case series.
        Am J Transpl. 2018; 18: 3045-3059
        • Focosi D.
        • Antonelli G.
        • Pistello M.
        • et al.
        Torquetenovirus: the human virome from bench to bedside.
        Clin Microbiol Infect. 2016; 22: 589-593
        • Hino S.
        • Miyata H.
        Torque teno virus (TTV): current status.
        Rev Med Virol. 2007; 17: 45-57
        • De Vlaminck I.
        • Khush K.K.
        • Strehl C.
        • et al.
        Temporal response of the human virome to immunosuppression and antiviral therapy.
        Cell. 2013; 155: 1178-1187
        • Jaksch P.
        • Kundi M.
        • Görzer I.
        • et al.
        Torque teno virus as a novel biomarker targeting the efficacy of immunosuppression after lung transplantation.
        J Infect Dis. 2018; 218: 1922-1928
        • Redondo N.
        • Navarro D.
        • Aguado J.M.
        • et al.
        Viruses, friends, and foes: the case of Torque Teno Virus and the net state of immunosuppression.
        Transpl Infect Dis. 2022; 24: e13778
        • Ahlenstiel-Grunow T.
        • Koch A.
        • Grosshennig A.
        • et al.
        A multicenter, randomized, open-labeled study to steer immunosuppressive and antiviral therapy by measurement of virus (CMV, ADV, HSV)-specific T cells in addition to determination of trough levels of immunosuppressants in pediatric kidney allograft recipients (IVIST01-trial): study protocol for a randomized controlled trial.
        Trials. 2014; 15: 324
        • Sester M.
        • Leboeuf C.
        • Schmidt T.
        • et al.
        The "ABC" of virus-specific T cell immunity in solid organ transplantation.
        Am J Transpl. 2016; 16: 1697-1706
        • Shino M.Y.
        • Weigt S.S.
        • Saggar R.
        • et al.
        Usefulness of immune monitoring in lung transplantation using adenosine triphosphate production in activated lymphocytes.
        J Heart Lung Transpl. 2012; 31: 996-1002
        • Piloni D.
        • Magni S.
        • Oggionni T.
        • et al.
        Clinical utility of CD4+ function assessment (ViraCor-IBT ImmuKnow test) in lung recipients.
        Transpl Immunol. 2016; 37: 35-39
        • Gardiner B.J.
        • Lee S.J.
        • Cristiano Y.
        • et al.
        Evaluation of Quantiferon®-Monitor as a biomarker of immunosuppression and predictor of infection in lung transplant recipients.
        Transpl Infect Dis. 2021; 23: e13550
        • Mian M.
        • Natori Y.
        • Ferreira V.
        • et al.
        Evaluation of a novel global immunity assay to predict infection in organ transplant recipients.
        Clin Infect Dis. 2018; 66: 1392-1397
        • Ravaioli M.
        • Neri F.
        • Lazzarotto T.
        • et al.
        Immunosuppression modifications based on an immune response assay: results of a randomized, controlled trial.
        Transplantation. 2015; 99: 1625-1632
        • Gottlieb J.
        • Reuss A.
        • Mayer K.
        • et al.
        Viral load-guided immunosuppression after lung transplantation (VIGILung)-study protocol for a randomized controlled trial.
        Trials. 2021; 22: 48
        • Jaksch P.
        • Wiedemann D.
        • Augustin V.
        • et al.
        Antithymocyte globulin induction therapy improves survival in lung transplantation for cystic fibrosis.
        Transpl Int. 2013; 26: 34-41
        • Kirkby S.
        • Whitson B.A.
        • Wehr A.M.
        • et al.
        Survival benefit of induction immunosuppression in cystic fibrosis lung transplant recipients.
        J Cyst Fibros. 2015; 14: 104-110
        • Wang J.
        • Zeevi A.
        • McCurry K.
        • et al.
        Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 3/3 non-expressors.
        Transpl Immunol. 2006; 15: 235-240
        • Staatz C.E.
        • Goodman L.K.
        • Tett S.E.
        Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I.
        Clin Pharmacokinet. 2010; 49: 141-175
        • Li Y.
        • Yan L.
        • Shi Y.
        • et al.
        CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients.
        Springerplus. 2015; 4: 637
        • Brazeau D.A.
        • Attwood K.
        • Meaney C.J.
        • et al.
        Beyond single nucleotide polymorphisms: CYP3A5∗3∗6∗7 composite and ABCB1 haplotype Associations to tacrolimus pharmacokinetics in black and white renal transplant recipients.
        Front Genet. 2020; 11: 889
        • Krynetski E.Y.
        • Evans W.E.
        Genetic polymorphism of thiopurine S-methyltransferase: molecular mechanisms and clinical importance.
        Pharmacology. 2000; 61: 136-146
        • Daniel L.L.
        • Dickson A.L.
        • Zanussi J.T.
        • et al.
        Predicted expression of genes involved in the thiopurine metabolic pathway and azathioprine discontinuation due to myelotoxicity.
        Clin Transl Sci. 2022; 15: 859-865
        • Silhan L.L.
        • Shah P.D.
        • Chambers D.C.
        • et al.
        Lung transplantation in telomerase mutation carriers with pulmonary fibrosis.
        Eur Respir J. 2014; 44: 178-187
        • Borie R.
        • Kannengiesser C.
        • Hirschi S.
        • et al.
        Severe hematologic complications after lung transplantation in patients with telomerase complex mutations.
        J Heart Lung Transpl. 2015; 34: 538-546
        • Bitterman R.
        • Marinelli T.
        • Husain S.
        Strategies for the prevention of invasive fungal infections after lung transplant.
        J Fungi (Basel). 2021; 7: 122
        • Florescu D.F.
        • Kalil A.C.
        • Qiu F.
        • et al.
        What is the impact of hypogammaglobulinemia on the rate of infections and survival in solid organ transplantation? A meta-analysis.
        Am J Transpl. 2013; 13: 2601-2610
        • Petrov A.A.
        • Traister R.S.
        • Crespo M.M.
        • et al.
        A prospective observational study of hypogammaglobulinemia in the first year after lung transplantation.
        Transpl Direct. 2018; 4: e372
        • Lederer D.J.
        • Philip N.
        • Rybak D.
        • et al.
        Intravenous immunoglobulin for hypogammaglobulinemia after lung transplantation: a randomized crossover trial.
        PLoS One. 2014; 9: e103908
        • Rocha P.N.
        • Rocha A.T.
        • Palmer S.M.
        • et al.
        Acute renal failure after lung transplantation: incidence, predictors and impact on perioperative morbidity and mortality.
        Am J Transpl. 2005; 5: 1469-1476
        • Arnaoutakis G.J.
        • George T.J.
        • Robinson C.W.
        • et al.
        Severe acute kidney injury according to the RIFLE (risk, injury, failure, loss, end stage) criteria affects mortality in lung transplantation.
        J Heart Lung Transpl. 2011; 30: 1161-1168
        • Jacques F.
        • El-Hamamsy I.
        • Fortier A.
        • et al.
        Acute renal failure following lung transplantation: risk factors, mortality, and long-term consequences.
        Eur J Cardiothorac Surg. 2012; 41: 193-199
        • Wehbe E.
        • Brock R.
        • Budev M.
        • et al.
        Short-term and long-term outcomes of acute kidney injury after lung transplantation.
        J Heart Lung Transpl. 2012; 31: 244-251
        • Fidalgo P.
        • Ahmed M.
        • Meyer S.R.
        • et al.
        Incidence and outcomes of acute kidney injury following orthotopic lung transplantation: a population-based cohort study.
        Nephrol Dial Transpl. 2014; 29: 1702-1709
        • Doricic J.
        • Greite R.
        • Vijayan V.
        • et al.
        Kidney injury after lung transplantation: long-term mortality predicted by post-operative day-7 serum creatinine and few clinical factors.
        PLoS One. 2022; 17: e0265002
        • George T.J.
        • Arnaoutakis G.J.
        • Beaty C.A.
        • et al.
        Acute kidney injury increases mortality after lung transplantation.
        Ann Thorac Surg. 2012; 94: 185-192
        • Mason D.P.
        • Solovera-Rozas M.
        • Feng J.
        • et al.
        Dialysis after lung transplantation: prevalence, risk factors and outcome.
        J Heart Lung Transpl. 2007; 26: 1155-1162
        • Ojo A.O.
        Renal disease in recipients of nonrenal solid organ transplantation.
        Semin Nephrol. 2007; 27: 498-507
        • Wehbe E.
        • Duncan A.E.
        • Dar G.
        • et al.
        Recovery from AKI and short- and long-term outcomes after lung transplantation.
        Clin J Am Soc Nephrol. 2013; 8: 19-25
        • Sawhney S.
        • Marks A.
        • Fluck N.
        • et al.
        Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury.
        Kidney Int. 2017; 92: 440-452
        • Bentata Y.
        Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity.
        Artif Organs. 2020; 44: 140-152
        • Nankivell B.J.
        • PʼNg C.H.
        • OʼConnell P.J.
        • et al.
        Calcineurin inhibitor nephrotoxicity through the lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras.
        Transplantation. 2016; 100: 1723-1731
        • Benazzo A.
        • Schwarz S.
        • Muckenhuber M.
        • et al.
        Alemtuzumab induction combined with reduced maintenance immunosuppression is associated with improved outcomes after lung transplantation: a single centre experience.
        PLoS One. 2019; 14: e0210443
        • Kim H.E.
        • Paik H.C.
        • Jeong S.J.
        • et al.
        Basiliximab induction with delayed calcineurin inhibitors for high-risk lung transplant candidates.
        Yonsei Med J. 2021; 62: 164-171
        • Cantarovich M.
        • Metrakos P.
        • Giannetti N.
        • et al.
        Anti-CD25 monoclonal antibody coverage allows for calcineurin inhibitor "holiday" in solid organ transplant patients with acute renal dysfunction.
        Transplantation. 2002; 73: 1169-1172
        • Alonso P.
        • Sanchez-Lazaro I.
        • Almenar L.
        • et al.
        Use of a "CNI holidays" strategy in acute renal dysfunction late after heart transplant. Report of two cases.
        Heart Int. 2014; 9: 74-77
        • Gottlieb J.
        • Neurohr C.
        • Müller-Quernheim J.
        • et al.
        A randomized trial of everolimus-based quadruple therapy vs standard triple therapy early after lung transplantation.
        Am J Transpl. 2019; 19: 1759-1769
        • Gullestad L.
        • Eiskjaer H.
        • Gustafsson F.
        • et al.
        Long-term outcomes of thoracic transplant recipients following conversion to everolimus with reduced calcineurin inhibitor in a multicenter, open-label, randomized trial.
        Transpl Int. 2016; 29: 819-829
        • Benazzo A.
        • Cho A.
        • Nechay A.
        • et al.
        Combined low-dose everolimus and low-dose tacrolimus after Alemtuzumab induction therapy: a randomized prospective trial in lung transplantation.
        Trials. 2021; 22: 6
        • Timofte I.
        • Terrin M.
        • Barr E.
        • et al.
        Belatacept for renal rescue in lung transplant patients.
        Transpl Int. 2016; 29: 453-463
        • Jordan S.C.
        • Lorant T.
        • Choi J.
        • et al.
        IgG endopeptidase in highly sensitized patients undergoing transplantation.
        N Engl J Med. 2017; 377: 442-453
        • Jordan S.C.
        • Legendre C.
        • Desai N.M.
        • et al.
        Imlifidase desensitization in crossmatch-positive, highly sensitized kidney transplant recipients: results of an international phase 2 trial (highdes).
        Transplantation. 2021; 105: 1808-1817
        • Kjellman C.
        • Maldonado A.Q.
        • Sjöholm K.
        • et al.
        Outcomes at 3 years posttransplant in imlifidase-desensitized kidney transplant patients.
        Am J Transpl. 2021; 21: 3907-3918
        • Mayer K.A.
        • Budde K.
        • Jilma B.
        • et al.
        Emerging drugs for antibody-mediated rejection after kidney transplantation: a focus on phase II & III trials.
        Expert Opin Emerg Drugs. 2022; 27: 151-167
        • Pearl M.
        • Weng P.L.
        • Chen L.
        • et al.
        Long term tolerability and clinical outcomes associated with tocilizumab in the treatment of refractory antibody mediated rejection (AMR) in pediatric renal transplant recipients.
        Clin Transpl. 2022; 36: e14734
        • Jordan S.C.
        • Choi J.
        • Kim I.
        • et al.
        Interleukin-6, A cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: therapeutic implications of IL-6 receptor blockade.
        Transplantation. 2017; 101: 32-44
        • Beyersdorf N.
        • Kerkau T.
        • Hünig T.
        CD28 co-stimulation in T-cell homeostasis: a recent perspective.
        Immunotargets Ther. 2015; 4: 111-122
        • Vincenti F.
        • Charpentier B.
        • Vanrenterghem Y.
        • et al.
        A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study).
        Am J Transpl. 2010; 10: 535-546
        • Vincenti F.
        • Rostaing L.
        • Grinyo J.
        • et al.
        Belatacept and long-term outcomes in kidney transplantation.
        N Engl J Med. 2016; 374: 333-343
        • Masson P.
        • Henderson L.
        • Chapman J.R.
        • et al.
        Belatacept for kidney transplant recipients.
        Cochrane Database Syst Rev. 2014; 2014: CD010699
        • Joffre O.
        • Santolaria T.
        • Calise D.
        • et al.
        Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes.
        Nat Med. 2008; 14: 88-92
        • Bézie S.
        • Charreau B.
        • Vimond Net al
        Human CD8+ Tregs expressing a MHC-specific CAR display enhanced suppression of human skin rejection and GVHD in NSG mice.
        Blood Adv. 2019; 3: 3522-3538
        • Muller Y.D.
        • Ferreira L.M.R.
        • Ronin E.
        • et al.
        Precision engineering of an anti-HLA-A2 chimeric antigen receptor in regulatory T cells for transplant immune tolerance.
        Front Immunol. 2021; 12: 686439
        • Todo S.
        • Yamashita K.
        • Goto R.
        • et al.
        A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation.
        Hepatology. 2016; 64: 632-643
        • Sasaki H.
        • Oura T.
        • Spitzer T.R.
        • et al.
        Preclinical and clinical studies for transplant tolerance via the mixed chimerism approach.
        Hum Immunol. 2018; 79: 258-265
        • Lee K.W.
        • Park J.B.
        • Park H.
        • et al.
        Inducing transient mixed chimerism for allograft survival without maintenance immunosuppression with combined kidney and bone marrow transplantation: protocol optimization.
        Transplantation. 2020; 104: 1472-1482
        • Szabolcs P.
        • Buckley R.H.
        • Davis R.D.
        • et al.
        Tolerance and immunity after sequential lung and bone marrow transplantation from an unrelated cadaveric donor.
        J Allergy Clin Immunol. 2015; 135: 567-570
        • Issa F.
        • Strober S.
        • Leventhal J.R.
        • et al.
        The fourth international workshop on clinical transplant tolerance.
        Am J Transpl. 2021; 21: 21-31
        • Iske J.
        • Hinze C.A.
        • Salman J.
        • et al.
        The potential of ex vivo lung perfusion on improving organ quality and ameliorating ischemia reperfusion injury.
        Am J Transpl. 2021; 21: 3831-3839
        • Haam S.
        • Noda K.
        • Philips B.J.
        • et al.
        Cyclosporin A administration during ex vivo lung perfusion preserves lung grafts in rat transplant model.
        Transplantation. 2020; 104: e252-e259
        • Wang A.
        • Ribeiro R.V.P.
        • Ali A.
        • et al.
        Ex vivo enzymatic treatment converts blood type A donor lungs into universal blood type lungs.
        Sci Transl Med. 2022; 14: eabm7190
        • Haam S.
        • Noda K.
        • Philips B.J.
        • et al.
        Cyclosporin A Administration During Ex Vivo Lung Perfusion Preserves Lung Grafts in Rat Transplant Model.
        Transplantation. 2020; 104: e252-e259
        • Wang A.
        • Ribeiro R.V.P.
        • Ali A.
        • et al.
        Ex vivo enzymatic treatment converts blood type A donor lungs into universal blood type lungs.
        Sci Transl Med. 2022; 14: eabm7190