Advertisement
Review Article| Volume 43, ISSUE 4, P717-725, December 2022

Non-Modulator Therapies

Developing a Therapy for Every Cystic Fibrosis Patient
  • Marie E. Egan
    Affiliations
    Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, Pediatric Pulmonary Allergy Immunology and Sleep Medicine, Yale Cystic Fibrosis Center, School of Medicine, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Chest Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Middleton P.G.
        • Mall M.A.
        • Drevinek P.
        • et al.
        Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele.
        N Engl J Med. 2019; 381: 1809-1819
        • Keating D.
        • Marigowda G.
        • Burr L.
        • et al.
        VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles.
        N Engl J Med. 2018; 379: 1612-1620
        • Heijerman H.G.M.
        • McKone E.F.
        • Downey D.G.
        • et al.
        Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial.
        Lancet. 2019; 394: 1940-1948
        • Harrison M.J.
        • Murphy D.M.
        • Plant B.J.
        Ivacaftor in a G551D homozygote with cystic fibrosis.
        N Engl J Med. 2013; 369: 1280-1282
        • Davies J.C.
        • Moskowitz S.M.
        • Brown C.
        • et al.
        VX-659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles.
        N Engl J Med. 2018; 379: 1599-1611
        • Rowe S.M.
        • Daines C.
        • Ringshausen F.C.
        • et al.
        Tezacaftor-Ivacaftor in residual-function heterozygotes with cystic fibrosis.
        N Engl J Med. 2017; 377: 2024-2035
        • Christopher Boyd A.
        • Guo S.
        • Huang L.
        • et al.
        Hart SL: new approaches to genetic therapies for cystic fibrosis.
        J Cyst Fibros. 2020; 19: S54-S59
        • Hodges C.A.
        • Conlon R.A.
        Delivering on the promise of gene editing for cystic fibrosis.
        Genes Dis. 2019; 6: 97-108
        • Mention K.
        • Santos L.
        • Harrison P.T.
        Gene and base editing as a therapeutic option for cystic fibrosis-learning from other diseases.
        Genes (Basel). 2019; 10: 387
        • Pranke I.
        • Golec A.
        • Hinzpeter A.
        • et al.
        Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine.
        Front Pharmacol. 2019; 10: 121
        • Sasaki S.
        • Guo S.
        Nucleic acid therapies for cystic fibrosis.
        Nucleic Acid Ther. 2018; 28: 1-9
        • Griesenbach U.
        • Davies J.C.
        • Alton E.
        Cystic fibrosis gene therapy: a mutation-independent treatment.
        Curr Opin Pulm Med. 2016; 22: 602-609
        • Sharma J.
        • Du M.
        • Wong E.
        • et al.
        A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion.
        Nat Commun. 2021; 12: 4358
        • Linde L.
        • Boelz S.
        • Neu-Yilik G.
        • et al.
        The efficiency of nonsense-mediated mRNA decay is an inherent character and varies among different cells.
        Eur J Hum Genet. 2007; 15: 1156-1162
        • Linde L.
        • Boelz S.
        • Nissim-Rafinia M.
        • et al.
        Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin.
        J Clin Invest. 2007; 117: 683-692
        • Howard M.
        • Frizzell R.A.
        • Bedwell D.M.
        Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations.
        Nat Med. 1996; 2: 467-469
        • Wilschanski M.
        • Yahav Y.
        • Yaacov Y.
        • et al.
        Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations.
        N Engl J Med. 2003; 349: 1433-1441
        • Leubitz A.
        • Frydman-Marom A.
        • Sharpe N.
        • et al.
        Safety, tolerability, and pharmacokinetics of single ascending doses of ELX-02, a potential treatment for genetic disorders caused by nonsense mutations, in healthy volunteers.
        Clin Pharmacol Drug Dev. 2019; 8: 984-994
        • Kerem E.
        • Konstan M.W.
        • De Boeck K.
        • et al.
        Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial.
        Lancet Respir Med. 2014; 2: 539-547
        • Lueck J.D.
        • Yoon J.S.
        • Perales-Puchalt A.
        • et al.
        Engineered transfer RNAs for suppression of premature termination codons.
        Nat Commun. 2019; 10: 822
        • Beumer W.
        • Swildens J.
        • Leal T.
        • et al.
        Evaluation of eluforsen, a novel RNA oligonucleotide for restoration of CFTR function in in vitro and murine models of p.Phe508del cystic fibrosis.
        PLoS One. 2019; 14: e0219182
        • Brinks V.
        • Lipinska K.
        • de Jager M.
        • et al.
        The cystic fibrosis-like airway surface layer is not a significant barrier for delivery of eluforsen to airway epithelial cells.
        J Aerosol Med Pulm Drug Deliv. 2019; 32: 303-316
        • Drevinek P.
        • Pressler T.
        • Cipolli M.
        • et al.
        Antisense oligonucleotide eluforsen is safe and improves respiratory symptoms in F508DEL cystic fibrosis.
        J Cyst Fibros. 2020; 19: 99-107
        • Sermet-Gaudelus I.
        • Clancy J.P.
        • Nichols D.P.
        • et al.
        Antisense oligonucleotide eluforsen improves CFTR function in F508del cystic fibrosis.
        J Cyst Fibros. 2019; 18: 536-542
        • Oren Y.S.
        • Pranke I.M.
        • Kerem B.
        • et al.
        The suppression of premature termination codons and the repair of splicing mutations in CFTR.
        Curr Opin Pharmacol. 2017; 34: 125-131
        • Chiba-Falek O.
        • Kerem E.
        • Shoshani T.
        • et al.
        The molecular basis of disease variability among cystic fibrosis patients carrying the 3849+10 kb C-->T mutation.
        Genomics. 1998; 53: 276-283
        • Robinson E.
        • MacDonald K.D.
        • Slaughter K.
        • et al.
        Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis.
        Mol Ther. 2018; 26: 2034-2046
        • zuckerman J.M.K.
        • Schechter M.S.
        • Dorgan D.
        • et al.
        Safety and tolerability of a single dose of MRT5005, an inhaled CFTR MRNA therapeutic in adult CF patients.
        Pediatr Pulmonology. 2019; 54: 350
        • Grubb B.R.
        • Pickles R.J.
        • Ye H.
        • et al.
        Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans.
        Nature. 1994; 371: 802-806
        • Boucher R.C.
        • Knowles M.R.
        • Johnson L.G.
        • et al.
        Gene therapy for cystic fibrosis using E1-deleted adenovirus: a phase I trial in the nasal cavity. The University of North Carolina at Chapel Hill.
        Hum Gene Ther. 1994; 5: 615-639
        • Fisher K.J.
        • Choi H.
        • Burda J.
        • et al.
        Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis.
        Virology. 1996; 217: 11-22
        • Engelhardt J.F.
        • Simon R.H.
        • Yang Y.
        • et al.
        Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: biological efficacy study.
        Hum Gene Ther. 1993; 4: 759-769
        • Zabner J.
        • Couture L.A.
        • Gregory R.J.
        • et al.
        Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis.
        Cell. 1993; 75: 207-216
        • Welsh M.J.
        • Smith A.E.
        • Zabner J.
        • et al.
        Cystic fibrosis gene therapy using an adenovirus vector: in vivo safety and efficacy in nasal epithelium.
        Hum Gene Ther. 1994; 5: 209-219
        • Wagner J.A.
        • Nepomuceno I.B.
        • Messner A.H.
        • et al.
        A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies.
        Hum Gene Ther. 2002; 13: 1349-1359
        • Wagner J.A.
        • Moran M.L.
        • Messner A.H.
        • et al.
        A phase I/II study of tgAAV-CF for the treatment of chronic sinusitis in patients with cystic fibrosis.
        Hum Gene Ther. 1998; 9: 889-909
        • Alton E.W.
        • Boyd A.C.
        • Cheng S.H.
        • et al.
        A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis.
        Thorax. 2013; 68: 1075-1077
        • Alton E.
        • Armstrong D.K.
        • Ashby D.
        • et al.
        Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial.
        Lancet Respir Med. 2015; 3: 684-691
        • Alton E.W.
        • Boyd A.C.
        • Porteous D.J.
        • et al.
        A phase I/IIa safety and efficacy study of Nebulized liposome-mediated gene therapy for cystic fibrosis supports a Multidose trial.
        Am J Respir Crit Care Med. 2015; 192: 1389-1392
        • Yang X.
        • Wang G.X.
        • Zhou J.F.
        CAR T cell therapy for hematological malignancies.
        Curr Med Sci. 2019; 39: 874-882
        • Gourd E.
        CAR T-cell cocktail therapy for B-cell malignancies.
        Lancet Oncol. 2019; 20: e669
        • Karponi G.
        • Zogas N.
        Gene therapy for beta-thalassemia: Updated perspectives.
        Appl Clin Genet. 2019; 12: 167-180
        • Harrison C.
        First gene therapy for beta-thalassemia approved.
        Nat Biotechnol. 2019; 37: 1102-1103
        • Stower H.
        Gene therapy for beta thalassemia.
        Nat Med. 2018; 24: 1781
        • Bennett J.
        Gene therapy for color blindness.
        N Engl J Med. 2009; 361: 2483-2484
        • Bennett J.
        • Wellman J.
        • Marshall K.A.
        • et al.
        Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial.
        Lancet. 2016; 388: 661-672
        • Sheridan C.
        Gene therapy rescues newborns with spinal muscular atrophy.
        Nat Biotechnol. 2018; 36: 669-670
        • Mendell J.R.
        • Al-Zaidy S.
        • Shell R.
        • et al.
        Single-dose gene-replacement therapy for spinal muscular atrophy.
        N Engl J Med. 2017; 377: 1713-1722
        • Nizzardo M.
        • Simone C.
        • Rizzo F.
        • et al.
        Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model.
        Sci Adv. 2015; 1: e1500078
        • Marson F.A.L.
        • Bertuzzo C.S.
        • Ribeiro J.D.
        Personalized or precision medicine? The example of cystic fibrosis.
        Front Pharmacol. 2017; 8: 390
        • Schwank G.
        • Koo B.K.
        • Sasselli V.
        • et al.
        Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.
        Cell Stem Cell. 2013; 13: 653-658
        • Bednarski C.
        • Tomczak K.
        Vom hovel B, Weber WM, cathomen T: targeted Integration of a super-Exon into the CFTR locus leads to functional correction of a cystic fibrosis cell line model.
        PLoS One. 2016; 11: e0161072
        • Lee C.M.
        • Flynn R.
        • Hollywood J.A.
        • et al.
        Correction of the DeltaF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair.
        Biores Open Access. 2012; 1: 99-108
        • Suzuki S.
        • Crane A.M.
        • Anirudhan V.
        • et al.
        Highly efficient gene editing of cystic fibrosis patient-derived airway basal cells results in functional CFTR correction.
        Mol Ther. 2020; 28: 1684-1695
        • Ramalingam S.
        • London V.
        • Kandavelou K.
        • et al.
        Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.
        Stem Cells Dev. 2013; 22: 595-610
        • Crane A.M.
        • Kramer P.
        • Bui J.H.
        • et al.
        Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells.
        Stem Cell Rep. 2015; 4: 569-577
        • Xia E.
        • Zhang Y.
        • Cao H.
        • et al.
        TALEN-mediated gene targeting for cystic fibrosis-gene therapy.
        Genes (Basel). 2019; 10: 39
        • Economos N.G.
        • Oyaghire S.
        • Quijano E.
        • et al.
        Peptide nucleic acids and gene editing: perspectives on structure and repair.
        Molecules. 2020; 25: 735
        • McNeer N.A.
        • Anandalingam K.
        • Fields R.J.
        • et al.
        Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium.
        Nat Commun. 2015; 6: 6952
        • Oyaghire S.N.
        • Quijano E.
        • Piotrowski-Daspit A.S.
        • et al.
        Poly(Lactic-co-Glycolic acid) nanoparticle delivery of peptide nucleic acids in vivo.
        Methods Mol Biol. 2020; 2105: 261-281
        • Ricciardi A.S.
        • Quijano E.
        • Putman R.
        • et al.
        Peptide nucleic acids as a tool for site-specific gene editing.
        Molecules. 2018; 23: 632
        • Vu A.
        • McCray Jr., P.B.
        New directions in pulmonary gene therapy.
        Hum Gene Ther. 2020; 31: 921-939
        • Eichstadt S.
        • Barriga M.
        • Ponakala A.
        • et al.
        Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa.
        JCI Insight. 2019; 4: e130554
        • Lwin S.M.
        • Syed F.
        • Di W.L.
        • et al.
        Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa.
        JCI Insight. 2019; 4: e126243
        • Marinkovich M.P.
        • Tang J.Y.
        Gene therapy for epidermolysis bullosa.
        J Invest Dermatol. 2019; 139: 1221-1226
        • Lee R.E.
        • Miller S.M.
        • Mascenik T.M.
        • et al.
        Assessing human airway epithelial progenitor cells for cystic fibrosis cell therapy.
        Am J Respir Cell Mol Biol. 2020; 63: 374-385
        • Berical A.
        • Lee R.E.
        • Randell S.H.
        • et al.
        Challenges facing airway epithelial cell-based therapy for cystic fibrosis.
        Front Pharmacol. 2019; 10: 74
        • Huang S.X.
        • Green M.D.
        • de Carvalho A.T.
        • et al.
        The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells.
        Nat Protoc. 2015; 10: 413-425
        • King N.E.
        • Suzuki S.
        • Barilla C.
        • et al.
        Correction of airway stem cells: genome editing approaches for the treatment of cystic fibrosis.
        Hum Gene Ther. 2020; 31: 956-972
        • Vaidyanathan S.
        • Salahudeen A.A.
        • Sellers Z.M.
        • et al.
        High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues CFTR function in differentiated epithelia.
        Cell Stem Cell. 2020; 26: 161-171.e4
        • Farbiak L.
        • Cheng Q.
        • Wei T.
        • et al.
        All-in-one dendrimer-based lipid nanoparticles enable precise HDR-mediated gene editing in.
        Vivo Adv Mater. 2021; 33: e2006619
        • Kauffman A.C.
        • Piotrowski-Daspit A.S.
        • Nakazawa K.H.
        • et al.
        Tunability of biodegradable poly(amine- co-ester) polymers for customized nucleic acid delivery and other biomedical applications.
        Biomacromolecules. 2018; 19: 3861-3873
        • Xu E.
        • Saltzman W.M.
        • Piotrowski-Daspit A.S.
        Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles.
        J Control Release. 2021; 335: 465-480
        • Piotrowski-Daspit A.S.
        • Glaze P.M.
        • Saltzman W.M.
        Debugging the genetic code: non-viral in vivo delivery of therapeutic genome editing technologies.
        Curr Opin Biomed Eng. 2018; 7: 24-32
        • Piotrowski-Daspit A.S.
        • Kauffman A.C.
        • Bracaglia L.G.
        • et al.
        Polymeric vehicles for nucleic acid delivery.
        Adv Drug Deliv Rev. 2020; 156: 119-132
        • Lee S.M.
        • Cheng Q.
        • Yu X.
        • et al.
        A systematic study of Unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo.
        Angew Chem Int Ed Engl. 2021; 60: 5848-5853
        • Lokugamage M.P.
        • Sago C.D.
        • Dahlman J.E.
        Testing thousands of nanoparticles in vivo using DNA barcodes.
        Curr Opin Biomed Eng. 2018; 7: 1-8
        • Lokugamage M.P.
        • Sago C.D.
        • Gan Z.
        • et al.
        Constrained nanoparticles deliver siRNA and sgRNA to T cells in vivo without targeting ligands.
        Adv Mater. 2019; 31: e1902251
        • Yan Z.
        • McCray Jr., P.B.
        • Engelhardt J.F.
        Advances in gene therapy for cystic fibrosis lung disease.
        Hum Mol Genet. 2019; 28: R88-R94
        • Ensinck M.
        • Mottais A.
        • Detry C.
        • et al.
        On the corner of models and cure: gene editing in cystic fibrosis.
        Front Pharmacol. 2021; 12: 662110