Advertisement
Review Article| Volume 43, ISSUE 4, P667-676, December 2022

Novel Approaches to Multidrug-Resistant Infections in Cystic Fibrosis

  • Thomas S. Murray
    Correspondence
    Corresponding authors.
    Affiliations
    Department of Pediatrics, Section Infectious Diseases and Global Health, Yale University School of Medicine, PO Box 208064, 333 Cedar Street, New Haven, CT 06520-8064, USA
    Search for articles by this author
  • Gail Stanley
    Correspondence
    Corresponding authors.
    Affiliations
    Department of Internal Medicine, Section Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, PO Box 208057, 300 Cedar Street TAC-441 South, New Haven, CT 06520-8057, USA

    Adult Cystic Fibrosis Program

    Yale University Center for Phage Biology & Therapy
    Search for articles by this author
  • Jonathan L. Koff
    Correspondence
    Corresponding authors.
    Affiliations
    Adult Cystic Fibrosis Program

    Yale University Center for Phage Biology & Therapy

    Department of Internal Medicine, Section Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, PO Box 208057, 300 Cedar Street TAC-455A South, New Haven, CT 06520-8057, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Chest Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Centers for disease control and prevention https://www.cdc.gov/infectioncontrol/guidelines/mdro/. updated February 2017 Accessed July 7, 2022.

      2. Cystic Fibrosis Foundation Patient Registry 2020 Annual Data Report Bethesda, Maryland ©2021 Cystic Fibrosis Foundation.

        • Rogers G.B.
        • Taylor S.L.
        • Hoffman L.R.
        • et al.
        The impact of CFTR modulator therapies on CF airway microbiology.
        J Cyst Fibros. 2020; 19: 359-364
        • Saiman L.
        Improving outcomes of infections in cystic fibrosis in the era of CFTR modulator therapy.
        Pediatr Pulmonol. 2019; 54: S18-S26
        • Hisert K.B.
        • Heltshe S.L.
        • Pope C.
        • et al.
        Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.
        Am J Respir Crit Care Med. 2017; 195: 1617-1628
        • Harris J.K.
        • Wagner B.D.
        • Zemanick E.T.
        • et al.
        Changes in Airway Microbiome and Inflammation with Ivacaftor Treatment in Patients with Cystic Fibrosis and the G551D Mutation.
        Ann Am Thorac Soc. 2020; 17: 212-220
        • Epps Q.J.
        • Epps K.L.
        • Young D.C.
        • et al.
        State of the art in cystic fibrosis pharmacology optimization of antimicrobials in the treatment of cystic fibrosis pulmonary exacerbations: III. Executive summary.
        Pediatr Pulmonol. 2021; 56: 1825-1837
        • Smith S.
        • Rowbotham N.J.
        • Regan K.H.
        Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis.
        Cochrane Database of Systematic Reviews. 2018;
        • Elborn J.S.
        • Vataire A.L.
        • Fukushima A.
        • et al.
        Comparison of Inhaled Antibiotics for the Treatment of Chronic Pseudomonas aeruginosa Lung Infection in Patients With Cystic Fibrosis: Systematic Literature Review and Network Meta-analysis.
        Clin Ther. 2016; 38: 2204-2226
        • Wenzler E.
        • Fraidenburg D.R.
        • Scardina T.
        • et al.
        Inhaled Antibiotics for Gram-Negative Respiratory Infections.
        Clinical microbiology reviews. 2016; 29: 581-632
        • Yahav D.
        • Giske C.G.
        • Grāmatniece A.
        • et al.
        New β-Lactam-β-Lactamase Inhibitor Combinations.
        Clin Microbiol Rev. 2020; 34
        • Parker A.C.
        • Pritchard P.
        • Preston T.
        • et al.
        Enhanced drug metabolism in young children with cystic fibrosis.
        Arch Dis Child. 1997; 77: 239-241
        • Kearns G.L.
        Hepatic drug metabolism in cystic fibrosis: recent developments and future directions.
        Ann Pharmacother. 1993; 27: 74-79
        • Prandota J.
        Clinical pharmacology of antibiotics and other drugs in cystic fibrosis.
        Drugs. 1988; 35: 542-578
        • Epps Q.J.
        • Epps K.L.
        • Young D.C.
        • et al.
        State of the art in cystic fibrosis pharmacology-Optimization of antimicrobials in the treatment of cystic fibrosis pulmonary exacerbations: I. Anti-methicillin-resistant Staphylococcus aureus (MRSA) antibiotics.
        Pediatr Pulmonol. 2020; 55: 33-57
        • Epps Q.J.
        • Epps K.L.
        • Zobell J.T.
        Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: II. Cephalosporins and penicillins latest update.
        Pediatr Pulmonol. 2021; 56: 1784-1788
        • Magreault S.
        • Roy C.
        • Launay M.
        • et al.
        Pharmacokinetic and Pharmacodynamic Optimization of Antibiotic Therapy in Cystic Fibrosis Patients: Current Evidences, Gaps in Knowledge and Future Directions.
        Clin Pharmacokinet. 2021; 60: 409-445
        • Prescott Jr., W.A.
        • Gentile A.E.
        • Nagel J.L.
        • et al.
        Continuous-infusion antipseudomonal Beta-lactam therapy in patients with cystic fibrosis.
        P T. 2011; 36: 723-763
        • Bensman T.J.
        • Wang J.
        • Jayne J.
        • et al.
        Pharmacokinetic-Pharmacodynamic Target Attainment Analyses To Determine Optimal Dosing of Ceftazidime-Avibactam for the Treatment of Acute Pulmonary Exacerbations in Patients with Cystic Fibrosis.
        Antimicrob Agents Chemother. 2017; 61
        • Garazzino S.
        • Altieri E.
        • Silvestro E.
        • et al.
        Ceftolozane/Tazobactam for Treating Children With Exacerbations of Cystic Fibrosis Due to Pseudomonas aeruginosa: A Review of Available Data.
        Front Pediatr. 2020; 8: 173
        • Forrester J.B.
        • Steed L.L.
        • Santevecchi B.A.
        • et al.
        Vitro Activity of Ceftolozane/Tazobactam vs Nonfermenting, Gram-Negative Cystic Fibrosis Isolates.
        Open Forum Infect Dis. 2018; 5: ofy158
        • Nguyen T.T.
        • Condren M.
        • Walter J.
        Ceftazidime-avibactam for the treatment of multidrug resistant Burkholderia cepacia complex in a pediatric cystic fibrosis patient.
        Pediatr Pulmonol. 2020; 55: 283-284
        • Nolan P.J.
        • Jain R.
        • Cohen L.
        • et al.
        In vitro activity of ceftolozane-tazobactam and ceftazidime-avibactam against Pseudomonas aeruginosa isolated from patients with cystic fibrosis.
        Diagn Microbiol Infect Dis. 2021; 99: 115204
        • Spoletini G.
        • Etherington C.
        • Shaw N.
        • et al.
        Use of ceftazidime/avibactam for the treatment of MDR Pseudomonas aeruginosa and Burkholderia cepacia complex infections in cystic fibrosis: a case series.
        J Antimicrob Chemother. 2019; 74: 1425-1429
        • Sader H.S.
        • Duncan L.R.
        • Doyle T.B.
        • et al.
        Antimicrobial activity of ceftazidime/avibactam, ceftolozane/tazobactam and comparator agents against Pseudomonas aeruginosa from cystic fibrosis patients.
        JAC Antimicrob Resist. 2021; 3: dlab126
        • Van Dalem A.
        • Herpol M.
        • Echahidi F.
        • et al.
        Vitro Susceptibility of Burkholderia cepacia Complex Isolated from Cystic Fibrosis Patients to Ceftazidime-Avibactam and Ceftolozane-Tazobactam.
        Antimicrob Agents Chemother. 2018; 62
        • Haidar G.
        • Philips N.J.
        • Shields R.K.
        • et al.
        Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance.
        Clin Infect Dis. 2017; 65: 110-120
        • Romano M.T.
        • et al.
        Ceftolozane/tazobactam for pulmonary exacerbation in a 63-year-old cystic fibrosis patient with renal insufficiency and an elevated MIC to Pseudomonas aeruginosa.
        IDCases. 2020; 21: e00830
        • Stokem K.
        • et al.
        Use of ceftolozane-tazobactam in a cystic fibrosis patient with multidrug-resistant pseudomonas infection and renal insufficiency.
        Respir Med Case Rep. 2018; 23: 8-9
        • Vickery S.B.
        • McClain D.
        • Wargo K.A.
        Successful Use of Ceftolozane-Tazobactam to Treat a Pulmonary Exacerbation of Cystic Fibrosis Caused by Multidrug-Resistant Pseudomonas aeruginosa.
        Pharmacotherapy. 2016; 36: e154-e159
        • Belcher R.
        • Zobell J.T.
        Optimization of antibiotics for cystic fibrosis pulmonary exacerbations due to highly resistant nonlactose fermenting Gram negative bacilli: Meropenem-vaborbactam and cefiderocol.
        Pediatr Pulmonol. 2021; 56: 3059-3061
        • Zeiser E.T.
        • Becka S.A.
        • Wilson B.M.
        • et al.
        Switching Partners": Piperacillin-Avibactam Is a Highly Potent Combination against Multidrug-Resistant Burkholderia cepacia Complex and Burkholderia gladioli Cystic Fibrosis Isolates.
        J Clin Microbiol. 2019; 57
        • Lopeman R.C.
        • Harrison J.
        • Rathbone D.L.
        • et al.
        Effect of Amoxicillin in combination with Imipenem-Relebactam against Mycobacterium abscessus.
        Sci Rep. 2020; 10: 928
        • Zhanel G.G.
        • Golden A.R.
        • Zelenitsky S.
        • et al.
        Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli.
        Drugs. 2019; 79: 271-289
        • Gavioli E.M.
        • Guardado N.
        • Haniff F.
        • et al.
        Does Cefiderocol Have a Potential Role in Cystic Fibrosis Pulmonary Exacerbation Management?.
        Microb Drug Resist. 2021 Dec; 27: 1726-1732
        • Warner N.C.
        • Bartelt L.A.
        • Lachiewicz A.M.
        • et al.
        Cefiderocol for the Treatment of Adult and Pediatric Patients With Cystic Fibrosis and Achromobacter xylosoxidans Infections.
        Clin Infect Dis. 2021; 73: e1754-e1757
        • Hurley M.N.
        • Ariff A.H.
        • Bertenshaw C.
        • et al.
        Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis.
        J Cyst Fibros. 2012; 11: 288-292
        • Aaron S.D.
        • Vandemheen K.L.
        • Ferris W.
        • et al.
        Combination antibiotic susceptibility testing to treat exacerbations of cystic fibrosis associated with multiresistant bacteria: a randomised, double-blind, controlled clinical trial.
        Lancet. 2005; 366: 463-471
        • Choby J.E.
        • Ozturk T.
        • Satola S.W.
        • et al.
        Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens.
        Lancet Infect Dis. 2021; 21: 597-598
        • Chalhoub H.
        • Saenz Y.
        • Nichols W.W.
        • et al.
        Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis.
        Int J Antimicrob Agents. 2018; 52: 697-701
        • Barsky E.E.
        • Pereira L.M.
        • Sullivan K.J.
        • et al.
        Ceftaroline pharmacokinetics and pharmacodynamics in patients with cystic fibrosis.
        J Cyst Fibros. 2018; 17: e25-e31
        • Branstetter J.
        • Searcy H.
        • Benner K.
        • et al.
        Ceftaroline vs vancomycin for the treatment of acute pulmonary exacerbations in pediatric patients with cystic fibrosis.
        Pediatr Pulmonol. 2020; 55: 3337-3342
        • Molloy L.
        • Snyder A.H.
        • Srivastava R.
        • et al.
        Ceftaroline Fosamil for Methicillin-Resistant Staphylococcus aureus Pulmonary Exacerbation in a Pediatric Cystic Fibrosis Patient.
        J Pediatr Pharmacol Ther. 2014; 19: 135-140
        • Varela M.C.
        • Roch M.
        • Taglialegna A.
        • et al.
        Carbapenems drive the collateral resistance to ceftaroline in cystic fibrosis patients with MRSA.
        Commun Biol. 2020; 3: 599
        • Nichols D.P.
        • Durmowicz A.G.
        • Field A.
        • et al.
        Developing Inhaled Antibiotics in Cystic Fibrosis: Current Challenges and Opportunities.
        Ann Am Thorac Soc. 2019; 16: 534-539
        • Waterer G.
        • Lord J.
        • Hofmann T.
        • et al.
        Phase I, Dose-Escalating Study of the Safety and Pharmacokinetics of Inhaled Dry-Powder Vancomycin (AeroVanc) in Volunteers and Patients with Cystic Fibrosis: a New Approach to Therapy for Methicillin-Resistant Staphylococcus aureus.
        Antimicrob Agents Chemother. 2020; 64
        • Dezube R.
        • Jennings M.T.
        • Rykiel M.
        • et al.
        Eradication of persistent methicillin-resistant Staphylococcus aureus infection in cystic fibrosis.
        Journal of Cystic Fibrosis. 2019; 18: 357-363
        • Flume P.A.
        • VanDevanter D.R.
        • Morgan E.E.
        • Dudley M.N.
        • Loutit J.S.
        • Bell S.C.
        • et al.
        A phase 3, multi-center, multinational, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of levofloxacin inhalation solution (APT-1026) in stable cystic fibrosis patients.
        J Cyst Fibros. 2016; 15: 495-502
        • Cystic Fibrosis Foundation
        Drug development pipeline: inhaled levofloxacin (Quinsair).
        (Available at:) (Accessed July 7 ,2022)
        • Banaschewski B.
        • Verma D.
        • Pennings L.J.
        • et al.
        Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections.
        J Cyst Fibros. 2019; 18: 714-720
        • Waterer G.
        Beyond antibiotics for pulmonary nontuberculous mycobacterial disease.
        Curr Opin Pulm Med. 2020; 26: 260-266
        • Bogdan C.
        Nitric oxide synthase in innate and adaptive immunity: an update.
        Trends Immunol. 2015; 36: 161-178
        • Meng Q.H.
        • Springall D.R.
        • Bishop A.E.
        • et al.
        Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis.
        J Pathol. 1998; 184: 323-331
        • Zheng S.
        • De B.P.
        • Choudhary S.
        • et al.
        Impaired innate host defense causes susceptibility to respiratory virus infections in cystic fibrosis.
        Immunity. 2003; 18: 619-630
        • Bogdanovski K.
        • Chau T.
        • Robinson C.J.
        • et al.
        Antibacterial activity of high-dose nitric oxide against pulmonary Mycobacterium abscessus disease.
        Access Microbiol. 2020; 2 (acmi000154)
        • Goldbart A.
        • Gatt D.
        • Golan Tripto I.
        Non-nuberculous mycobacteria infection treated with intermittently inhaled high-dose nitric oxide.
        BMJ Case Rep. 2021; 14
        • Yaacoby-Bianu K.
        • Gur M.
        • Toukan Y.
        • et al.
        Compassionate Nitric Oxide Adjuvant Treatment of Persistent Mycobacterium Infection in Cystic Fibrosis Patients.
        Pediatr Infect Dis J. 2018; 37: 336-338
        • Bentur L.
        • Gur M.
        • Ashkenazi M.
        • et al.
        Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection.
        J Cyst Fibros. 2020; 19: 225-231
      3. Cystic Fibrosis Foundation https://apps.cff.org/Trials/Pipeline/details/10122/Inhaled-Nitric-Oxide-Thiolanox. Accessed July 7, 2022.

        • Scott J.P.
        • Ji Y.
        • Kannan M.
        • et al.
        Inhaled granulocyte-macrophage colony-stimulating factor for Mycobacterium abscessus in cystic fibrosis.
        Eur Respir J. 2018; 51
      4. Cystic Fibrosis Foundation. https://apps.cff.org/Trials/Pipeline/details/10165/Inhaled-Molgramostim. Accessed July 7, 2022.

        • Chitambar C.R.
        • Narasimhan J.
        Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium.
        Pathobiology. 1991; 59: 3-10
        • Goss C.H.
        • Kaneko Y.
        • Khuu L.
        • et al.
        Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections.
        Sci Transl Med. 2018; 10
        • Kaneko Y.
        • Thoendel M.
        • Olakanmi O.
        • et al.
        The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity.
        J Clin Invest. 2007; 117: 877-888
        • Abdalla M.Y.
        • Switzer B.L.
        • Goss C.H.
        • et al.
        Gallium Compounds Exhibit Potential as New Therapeutic Agents against Mycobacterium abscessus.
        Antimicrob Agents Chemother. 2015; 59: 4826-4834
        • Kortright K.E.
        • Chan B.K.
        • Koff J.L.
        • et al.
        Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria.
        Cell Host & Microbe. 2019; 25: 219-232
        • Wommack K.E.
        • Colwell R.R.
        Virioplankton: viruses in aquatic ecosystems.
        Microbiology and molecular biology reviews : MMBR. 2000; 64: 69-114
        • Oh J.
        • Byrd A.L.
        • Deming C.
        • et al.
        Biogeography and individuality shape function in the human skin metagenome.
        Nature. 2014; 514: 59-64
        • Reyes A.
        • Haynes M.
        • Hanson N.
        • et al.
        Viruses in the faecal microbiota of monozygotic twins and their mothers.
        Nature. 2010; 466: 334-338
        • Abedon S.T.
        Bacteriophage Clinical Use as Antibacterial "Drugs": Utility and Precedent.
        Microbiol Spectr. 2017; 5
        • Abdelkader K.
        • Gerstmans H.
        • Saafan A.
        • et al.
        The Preclinical and Clinical Progress of Bacteriophages and Their Lytic Enzymes: The Parts are Easier than the Whole.
        Viruses. 2019; 11
        • Dedrick R.M.
        • Guerrero-Bustamante C.A.
        • Garlena R.A.
        • Russell D.A.
        • et al.
        Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus.
        Nat Med. 2019; 25: 730-733
        • Luong T.
        • Salabarria A.-C.
        • Roach D.R.
        Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going?.
        Clinical Therapeutics. 2020; 42: 1659-1680
        • Dufour N.
        • Delattre R.
        • Ricard J.D.
        • et al.
        The Lysis of Pathogenic Escherichia coli by Bacteriophages Releases Less Endotoxin Than by β-Lactams.
        Clin Infect Dis. 2017; 64: 1582-1588
        • Chan B.K.
        • Stanley G.
        • Modak M.
        • et al.
        Bacteriophage therapy for infections in CF.
        Pediatr Pulmonol. 2021; 56 (S4–s9)
        • Wright R.C.T.
        • Friman V.P.
        • Smith M.C.M.
        • et al.
        Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure.
        mBio. 2019 Sep 24; 10 (e01652–19)
        • Dennehy J.J.
        • Turner P.E.
        Reduced fecundity is the cost of cheating in RNA virus phi6.
        Proc Biol Sci. 2004; 271: 2275-2282
        • Labrie S.J.
        • Samson J.E.
        • Moineau S.
        Bacteriophage resistance mechanisms.
        Nat Rev Microbiol. 2010; 8: 317-327
        • Chan B.K.
        • Sistrom M.
        • Wertz J.E.
        • et al.
        Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.
        Sci Rep. 2016; 6: 26717
        • Chan B.K.
        • Turner P.E.
        • Kim S.
        • et al.
        Phage treatment of an aortic graft infected with Pseudomonas aeruginosa.
        Evol Med Public Health. 2018; 2018: 60-66
        • Dedrick R.M.
        • Freeman K.G.
        • Nguyen J.A.
        • et al.
        Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection.
        Nat Med. 2021; 27: 1357-1361