Advertisement
Review Article| Volume 43, ISSUE 4, P647-665, December 2022

The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Chest Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shteinberg M.
        • Haq I.J.
        • Polineni D.
        • et al.
        Cystic fibrosis.
        Lancet. 2021; 397: 2195-2211
        • Csanady L.
        • Vergani P.
        • Gadsby D.C.
        Structure, gating, and regulation of the CFTR anion channel.
        Physiol Rev. 2019; 99: 707-738
        • Infield D.T.
        • Strickland K.M.
        • Gaggar A.
        • et al.
        The molecular evolution of function in the CFTR chloride channel.
        J Gen Physiol. 2021; 153: e202012625
        • Stoltz D.A.
        • Meyerholz D.K.
        • Welsh M.J.
        Origins of cystic fibrosis lung disease.
        N Engl J Med. 2015; 372: 351-362
        • Huang E.N.
        • Quach H.
        • Lee J.A.
        • et al.
        A developmental role of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis lung disease pathogenesis.
        Front Cell Dev Biol. 2021; 9: 742891
        • Mall M.A.
        • Mayer-Hamblett N.
        • Rowe S.M.
        Cystic fibrosis: emergence of highly effective targeted therapeutics and potential clinical implications.
        Am J Respir Crit Care Med. 2020; 201: 1193-1208
        • Elborn J.S.
        Personalised medicine for cystic fibrosis: treating the basic defect.
        Eur Respir Rev. 2013; 22: 3-5
        • Brodlie M.
        • Haq I.J.
        • Roberts K.
        • et al.
        Targeted therapies to improve CFTR function in cystic fibrosis.
        Genome Med. 2015; 7: 101
        • Van Goor F.
        • Hadida S.
        • Grootenhuis P.D.
        • et al.
        Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770.
        Proc Natl Acad Sci U S A. 2009; 106: 18825-18830
        • Ramsey B.W.
        • Davies J.
        • McElvaney N.G.
        • et al.
        A CFTR potentiator in patients with cystic fibrosis and the G551D mutation.
        N Engl J Med. 2011; 365: 1663-1672
        • Accurso F.J.
        • Rowe S.M.
        • Clancy J.P.
        • et al.
        Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation.
        N Engl J Med. 2010; 363: 1991-2003
        • Cooke R.E.
        • Gochberg S.H.
        Physiology of the sweat gland in cystic fibrosis of the pancreas.
        Pediatrics. 1956; 18: 701-715
      1. Cystic fibrosis Foundation patient registry 2020 Annual data Report. Cystic Fibrosis Foundation, Bethesda, MD2021
        • Ostedgaard L.S.
        • Meyerholz D.K.
        • Chen J.H.
        • et al.
        The DeltaF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs.
        Sci Transl Med. 2011; 3 (74ra24)
        • Farinha C.M.
        • King-Underwood J.
        • Sousa M.
        • et al.
        Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction.
        Chem Biol. 2013; 20: 943-955
        • Van Goor F.
        • Hadida S.
        • Grootenhuis P.D.
        • et al.
        Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809.
        Proc Natl Acad Sci U S A. 2011; 108: 18843-18848
        • Norman P.
        Novel picolinamide-based cystic fibrosis transmembrane regulator modulators: evaluation of WO2013038373, WO2013038376, WO2013038381, WO2013038386 and WO2013038390.
        Expert Opin Ther Pat. 2014; 24: 829-837
        • Boyle M.P.
        • Bell S.C.
        • Konstan M.W.
        • et al.
        A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial.
        Lancet Respir Med. 2014; 2: 527-538
        • Wainwright C.E.
        • Elborn J.S.
        • Ramsey B.W.
        • et al.
        Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR.
        N Engl J Med. 2015; 373: 220-231
        • Taylor-Cousar J.L.
        • Munck A.
        • McKone E.F.
        • et al.
        Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del.
        N Engl J Med. 2017; 377: 2013-2023
        • Heijerman H.G.M.
        • McKone E.F.
        • Downey D.G.
        • et al.
        Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial.
        Lancet. 2019; 394: 1940-1948
        • Middleton P.G.
        • Mall M.A.
        • Drevinek P.
        • et al.
        Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele.
        N Engl J Med. 2019; 381: 1809-1819
        • Martin C.
        • Burnet E.
        • Ronayette-Preira A.
        • et al.
        Patient perspectives following initiation of elexacaftor-tezacaftor-ivacaftor in people with cystic fibrosis and advanced lung disease.
        Respir Med Res. 2021; 80: 100829
        • Burgel P.R.
        • Durieu I.
        • Chiron R.
        • et al.
        Rapid improvement after starting elexacaftor-tezacaftor- ivacaftor in patients with cystic fibrosis and advanced pulmonary disease.
        Am J Respir Crit Care Med. 2021; 204: 64-73
        • DiMango E.
        • Spielman D.B.
        • Overdevest J.
        • et al.
        Effect of highly effective modulator therapy on quality of life in adults with cystic fibrosis.
        Int Forum Allergy Rhinol. 2021; 11: 75-78
        • Barry P.J.
        • Taylor-Cousar J.L.
        Triple combination cystic fibrosis transmembrane conductance regulator modulator therapy in the real world - opportunities and challenges.
        Curr Opin Pulm Med. 2021; 27: 554-566
        • Rowe S.M.
        • Heltshe S.L.
        • Gonska T.
        • et al.
        Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis.
        Am J Respir Crit Care Med. 2014; 190: 175-184
        • Abou Alaiwa M.H.
        • Launspach J.L.
        • Grogan B.
        • et al.
        Ivacaftor-induced sweat chloride reductions correlate with increases in airway surface liquid pH in cystic fibrosis.
        JCI insight. 2018; 3: e121468
        • Balazs A.
        • Mall M.A.
        Mucus obstruction and inflammation in early cystic fibrosis lung disease: emerging role of the IL-1 signaling pathway.
        Pediatr Pulmonol. 2019; 54: S5-S12
        • Esther Jr., C.R.
        • Muhlebach M.S.
        • Ehre C.
        • et al.
        Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis.
        Sci Transl Med. 2019; 11
        • Rosen B.H.
        • Chanson M.
        • Gawenis L.R.
        • et al.
        Animal and model systems for studying cystic fibrosis.
        J Cyst Fibros. 2018; 17: S28-S34
        • Rosen B.H.
        • Evans T.I.A.
        • Moll S.R.
        • et al.
        Infection is not required for mucoinflammatory lung disease in CFTR-knockout ferrets.
        Am J Respir Crit Care Med. 2018; 197: 1308-1318
        • Bouzek D.C.
        • Abou Alaiwa M.H.
        • Adam R.J.
        • et al.
        Early lung disease exhibits bacteria-dependent and -independent abnormalities in cystic fibrosis pigs.
        Am J Respir Crit Care Med. 2021; 204: 692-702
        • Mall M.A.
        • Danahay H.
        • Boucher R.C.
        Emerging concepts and therapies for mucoobstructive lung disease.
        Ann Am Thorac Soc. 2018; 15: S216-S226
        • Trojanek J.B.
        • Cobos-Correa A.
        • Diemer S.
        • et al.
        Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema.
        Am J Respir Cell Mol Biol. 2014; 51: 709-720
        • Hector A.
        • Schafer H.
        • Poschel S.
        • et al.
        Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection.
        Am J Respir Crit Care Med. 2015; 191: 914-923
        • Khalaf M.
        • Scott-Ward T.
        • Causer A.
        • et al.
        Cystic fibrosis transmembrane conductance regulator (CFTR) in human lung microvascular endothelial cells controls oxidative stress, reactive oxygen-mediated cell signaling and inflammatory responses.
        Front Physiol. 2020; 11: 879
        • Bonfield T.L.
        • Konstan M.W.
        • Berger M.
        Altered respiratory epithelial cell cytokine production in cystic fibrosis.
        J Allergy Clin Immunol. 1999; 104: 72-78
        • Venkatakrishnan A.
        • Stecenko A.A.
        • King G.
        • et al.
        Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells.
        Am J Respir Cell Mol Biol. 2000; 23: 396-403
        • Perez A.
        • Issler A.C.
        • Cotton C.U.
        • et al.
        CFTR inhibition mimics the cystic fibrosis inflammatory profile.
        Am J Physiol Lung Cell Mol Physiol. 2007; 292: L383-L395
        • Cohen T.S.
        • Prince A.
        Cystic fibrosis: a mucosal immunodeficiency syndrome.
        Nat Med. 2012; 18: 509-519
        • O'Connor J.B.
        • Mottlowitz M.M.
        • Wagner B.D.
        • et al.
        Divergence of bacterial communities in the lower airways of CF patients in early childhood.
        PloS One. 2021; 16: e0257838
        • Frayman K.B.
        • Wylie K.M.
        • Armstrong D.S.
        • et al.
        Differences in the lower airway microbiota of infants with and without cystic fibrosis.
        J Cystic Fibrosis. 2019; 18: 646-652
        • Gomez M.I.
        • Prince A.
        Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis.
        Curr Opin Pharmacol. 2007; 7: 244-251
        • Hauser A.R.
        • Jain M.
        • Bar-Meir M.
        • et al.
        Clinical significance of microbial infection and adaptation in cystic fibrosis.
        Clin Microbiol Rev. 2011; 24: 29-70
        • Aaron S.D.
        • Ramotar K.
        • Ferris W.
        • et al.
        Adult cystic fibrosis exacerbations and new strains of Pseudomonas aeruginosa.
        Am J Respir Crit Care Med. 2004; 169: 811-815
        • Muhlebach M.S.
        • Zorn B.T.
        • Esther C.R.
        • et al.
        Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children.
        PLoS Pathog. 2018; 14: e1006798
        • Coburn B.
        • Wang P.W.
        • Diaz Caballero J.
        • et al.
        Lung microbiota across age and disease stage in cystic fibrosis.
        Sci Rep. 2015; 5: 10241
        • Zhao J.
        • Schloss P.D.
        • Kalikin L.M.
        • et al.
        Decade-long bacterial community dynamics in cystic fibrosis airways.
        Proc Natl Acad Sci U S A. 2012; 109: 5809-5814
        • Frey D.L.
        • Boutin S.
        • Dittrich S.A.
        • et al.
        Relationship between airway dysbiosis, inflammation and lung function in adults with cystic fibrosis.
        J Cystic Fibrosis. 2021; 20: 754-760
        • Horsley A.R.
        • Davies J.C.
        • Gray R.D.
        • et al.
        Changes in physiological, functional and structural markers of cystic fibrosis lung disease with treatment of a pulmonary exacerbation.
        Thorax. 2013; 68: 532-539
        • Liou T.G.
        • Adler F.R.
        • Keogh R.H.
        • et al.
        Sputum biomarkers and the prediction of clinical outcomes in patients with cystic fibrosis.
        PloS One. 2012; 7: e42748
        • Downey D.G.
        • Brockbank S.
        • Martin S.L.
        • et al.
        The effect of treatment of cystic fibrosis pulmonary exacerbations on airways and systemic inflammation.
        Pediatr Pulmonol. 2007; 42: 729-735
        • Ordonez C.L.
        • Henig N.R.
        • Mayer-Hamblett N.
        • et al.
        Inflammatory and microbiologic markers in induced sputum after intravenous antibiotics in cystic fibrosis.
        Am J Respir Crit Care Med. 2003; 168: 1471-1475
        • Pittman J.E.
        • Wylie K.M.
        • Akers K.
        • et al.
        Association of antibiotics, airway microbiome, and inflammation in infants with cystic fibrosis.
        Ann Am Thorac Soc. 2017; 14: 1548-1555
        • Bruscia E.M.
        • Bonfield T.L.
        Innate and adaptive immunity in cystic fibrosis.
        Clin chest Med. 2016; 37: 17-29
        • Moss R.B.
        • Hsu Y.P.
        • Olds L.
        Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes.
        Clin Exp Immunol. 2000; 120: 518-525
        • Kosamo S.
        • Hisert K.B.
        • Dmyterko V.
        • et al.
        Strong toll-like receptor responses in cystic fibrosis patients are associated with higher lung function.
        J Cystic Fibrosis. 2020; 19: 608-613
        • Hartl D.
        • Griese M.
        • Kappler M.
        • et al.
        Pulmonary T(H)2 response in Pseudomonas aeruginosa- infected patients with cystic fibrosis.
        J Allergy Clin Immunol. 2006; 117: 204-211
        • Brennan S.
        • Sly P.D.
        • Gangell C.L.
        • et al.
        Alveolar macrophages and CC chemokines are increased in children with cystic fibrosis.
        Eur Respir J. 2009; 34: 655-661
        • Lindberg U.
        • Svensson L.
        • Hellmark T.
        • et al.
        Increased platelet activation occurs in cystic fibrosis patients and correlates to clinical status.
        Thromb Res. 2018; 162: 32-37
        • Lara-Reyna S.
        • Holbrook J.
        • Jarosz-Griffiths H.H.
        • et al.
        Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations.
        Cell Mol Life Sci. 2020; 77: 4485-4503
        • Ng H.P.
        • Zhou Y.
        • Song K.
        • et al.
        Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice.
        PloS One. 2014; 9: e106813
        • Su X.
        • Looney M.R.
        • Su H.E.
        • et al.
        Role of CFTR expressed by neutrophils in modulating acute lung inflammation and injury in mice.
        Inflamm Res. 2011; 60: 619-632
        • Bruscia E.M.
        • Bonfield T.L.
        Cystic fibrosis lung immunity: the role of the macrophage.
        J Innate Immun. 2016; 8: 550-563
        • Duan Y.
        • Li G.
        • Xu M.
        • et al.
        CFTR is a negative regulator of gamma delta T cell IFN-gamma production and antitumor immunity.
        Cell Mol Immunol. 2021; 18: 1934-1944
        • Collin A.M.
        • Lecocq M.
        • Noel S.
        • et al.
        Lung immunoglobulin A immunity dysregulation in cystic fibrosis.
        EBioMedicine. 2020; 60: 102974
        • Polverino F.
        • Lu B.
        • Quintero J.R.
        • et al.
        CFTR regulates B cell activation and lymphoid follicle development.
        Respir Res. 2019; 20: 133
        • Xu Y.
        • Tertilt C.
        • Krause A.
        • et al.
        Influence of the cystic fibrosis transmembrane conductance regulator on expression of lipid metabolism-related genes in dendritic cells.
        Respir Res. 2009; 10: 26
        • Ortiz-Munoz G.
        • Yu M.A.
        • Lefrancais E.
        • et al.
        Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation.
        J Clin Invest. 2020; 130: 2041-2053
        • Green M.
        • Lindgren N.
        • Henderson A.
        • et al.
        Ivacaftor partially corrects airway inflammation in a humanized G551D rat.
        Am J Physiol Lung Cell Mol Physiol. 2021; 320: L1093-L1100
        • Bonfield T.L.
        • Hodges C.A.
        • Cotton C.U.
        • et al.
        Absence of the cystic fibrosis transmembrane regulator (Cftr) from myeloid-derived cells slows resolution of inflammation and infection.
        J Leukoc Biol. 2012; 92: 1111-1122
        • Bruscia E.M.
        • Zhang P.X.
        • Ferreira E.
        • et al.
        Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator-/- mice.
        Am J Respir Cell Mol Biol. 2009; 40: 295-304
        • Lukasiak A.
        • Zajac M.
        The distribution and role of the CFTR protein in the intracellular compartments.
        Membranes (Basel). 2021; 11
        • Zhou Y.
        • Song K.
        • Painter R.G.
        • et al.
        Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils.
        J innate Immun. 2013; 5: 219-230
        • Guggino W.B.
        • Stanton B.A.
        New insights into cystic fibrosis: molecular switches that regulate CFTR.
        Nat Rev Mol Cell Biol. 2006; 7: 426-436
        • Zhang P.X.
        • Murray T.S.
        • Villella V.R.
        • et al.
        Reduced caveolin-1 promotes hyperinflammation due to abnormal heme oxygenase-1 localization in lipopolysaccharide-challenged macrophages with dysfunctional cystic fibrosis transmembrane conductance regulator.
        J Immunol. 2013; 190: 5196-5206
        • Kunzelmann K.
        • Mehta A.
        CFTR: a hub for kinases and crosstalk of cAMP and Ca2+.
        FEBS J. 2013; 280: 4417-4429
        • Di Pietro C.
        • Oz H.H.
        • Murray T.S.
        • et al.
        Targeting the heme oxygenase 1/carbon monoxide pathway to resolve lung hyper-inflammation and restore a regulated immune response in cystic fibrosis.
        Front Pharmacol. 2020; 11: 1059
        • DiBattista A.
        • McIntosh N.
        • Lamoureux M.
        • et al.
        Metabolic signatures of cystic fibrosis identified in dried blood spots for newborn screening without carrier identification.
        J Proteome Res. 2019; 18: 841-854
        • Bardon A.
        Cystic fibrosis. Carbohydrate metabolism in CF and in animal models for CF.
        Acta Paediatr Scand Suppl. 1987; 332: 1-30
        • Bardon A.
        • Ceder O.
        • Kollberg H.
        Increased activity of four glycolytic enzymes in cultured fibroblasts from cystic fibrosis patients.
        Res Commun Chem Pathol Pharmacol. 1986; 51: 405-408
        • Soto-Heredero G.
        • Gomez de Las Heras M.M.
        • Gabande-Rodriguez E.
        • et al.
        Glycolysis - a key player in the inflammatory response.
        FEBS J. 2020; 287: 3350-3369
        • Kelly B.
        • O'Neill L.A.
        Metabolic reprogramming in macrophages and dendritic cells in innate immunity.
        Cell Res. 2015; 25: 771-784
        • Henig N.R.
        • Tonelli M.R.
        • Pier M.V.
        • et al.
        Sputum induction as a research tool for sampling the airways of subjects with cystic fibrosis.
        Thorax. 2001; 56: 306-311
        • Hisert K.B.
        • Liles W.C.
        • Manicone A.M.
        A flow cytometric method for isolating cystic fibrosis airway macrophages from expectorated sputum.
        Am J Respir Cell Mol Biol. 2019; 61: 42-50
        • Mills E.L.
        • Kelly B.
        • Logan A.
        • et al.
        Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
        Cell. 2016; 167: 457-470.e3
        • Riquelme S.A.
        • Lozano C.
        • Moustafa A.M.
        • et al.
        CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection.
        Sci Transl Med. 2019; 11: eaav4634
        • Luciani A.
        • Villella V.R.
        • Esposito S.
        • et al.
        Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition.
        Nat Cell Biol. 2010; 12: 863-875
        • Riquelme S.A.
        • Hopkins B.D.
        • Wolfe A.L.
        • et al.
        Cystic fibrosis transmembrane conductance regulator attaches tumor suppressor PTEN to the membrane and promotes anti Pseudomonas aeruginosa immunity.
        Immunity. 2017; 47: 1169-1181.e7
        • Iannitti R.G.
        • Napolioni V.
        • Oikonomou V.
        • et al.
        IL-1 receptor antagonist ameliorates inflammasome- dependent inflammation in murine and human cystic fibrosis.
        Nat Commun. 2016; 7: 10791
        • Buck M.D.
        • Sowell R.T.
        • Kaech S.M.
        • et al.
        Metabolic instruction of immunity.
        Cell. 2017; 169: 570-586
        • Kopp B.T.
        • Abdulrahman B.A.
        • Khweek A.A.
        • et al.
        Exaggerated inflammatory responses mediated by Burkholderia cenocepacia in human macrophages derived from Cystic fibrosis patients.
        Biochem Biophys Res Commun. 2012; 424: 221-227
        • Meyer M.
        • Huaux F.
        • Gavilanes X.
        • et al.
        Azithromycin reduces exaggerated cytokine production by M1 alveolar macrophages in cystic fibrosis.
        Am J Respir Cell Mol Biol. 2009; 41: 590-602
        • Scambler T.
        • Jarosz-Griffiths H.H.
        • Lara-Reyna S.
        • et al.
        ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis.
        Elife. 2019; 8: e49248
        • Lara-Reyna S.
        • Scambler T.
        • Holbrook J.
        • et al.
        Metabolic reprograming of cystic fibrosis macrophages via the IRE1alpha arm of the unfolded protein response results in exacerbated inflammation.
        Front Immunol. 2019; 10: 1789
        • Ribeiro C.M.
        • Boucher R.C.
        Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses.
        Proc Am Thorac Soc. 2010; 7: 387-394
        • Ribeiro C.M.
        • Lubamba B.A.
        Role of IRE1alpha/XBP-1 in cystic fibrosis airway inflammation.
        Int J Mol Sci. 2017; 18: 118
        • Garratt L.W.
        • Wright A.K.
        • Ranganathan S.C.
        • et al.
        Small macrophages are present in early childhood respiratory disease.
        J Cyst Fibros. 2012; 11: 201-208
        • Schupp J.C.
        • Khanal S.
        • Gomez J.L.
        • et al.
        Single-cell transcriptional archetypes of airway inflammation in cystic fibrosis.
        Am J Respir Crit Care Med. 2020; 202: 1419-1429
        • Wright A.K.
        • Rao S.
        • Range S.
        • et al.
        Pivotal advance: expansion of small sputum macrophages in CF: failure to express MARCO and mannose receptors.
        J Leukoc Biol. 2009; 86 (Pubmed Exact): 479-489
        • Regamey N.
        • Tsartsali L.
        • Hilliard T.N.
        • et al.
        Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis.
        Thorax. 2012; 67: 164-170
        • Bruscia E.M.
        • Zhang P.X.
        • Satoh A.
        • et al.
        Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis.
        J Immunol. 2011; 186: 6990-6998
        • del Fresno C.
        • Garcia-Rio F.
        • Gomez-Pina V.
        • et al.
        Potent phagocytic activity with impaired antigen presentation identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated monocytes from cystic fibrosis patients.
        J Immunol. 2009; 182: 6494-6507
        • del Fresno C.
        • Gomez-Pina V.
        • Lores V.
        • et al.
        Monocytes from cystic fibrosis patients are locked in an LPS tolerance state: down-regulation of TREM-1 as putative underlying mechanism.
        PloS one. 2008; 3: e2667
        • Zhang X.
        • Pan A.
        • Jia S.
        • et al.
        Cystic fibrosis plasma blunts the immune response to bacterial infection.
        Am J Respir Cell Mol Biol. 2019; 61: 301-311
        • del Campo R.
        • Martinez E.
        • del Fresno C.
        • et al.
        Translocated LPS might cause endotoxin tolerance in circulating monocytes of cystic fibrosis patients.
        PloS One. 2011; 6: e29577
        • Biswas S.K.
        • Lopez-Collazo E.
        Endotoxin tolerance: new mechanisms, molecules and clinical significance.
        Trends Immunol. 2009; 30: 475-487
        • Bhatraju P.K.
        • Hisert K.B.
        • Aitken M.L.
        • et al.
        Higher plasma endothelial markers in adults with cystic fibrosis compared with healthy age-matched control subjects.
        Ann Am Thorac Soc. 2019; 16: 768-771
        • Sorio C.
        • Montresor A.
        • Bolomini-Vittori M.
        • et al.
        Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a monocyte-selective adhesion deficiency.
        Am J Respir Crit Care Med. 2016; 193: 1123-1133
        • Barnaby R.
        • Koeppen K.
        • Nymon A.
        • et al.
        Lumacaftor (VX-809) restores the ability of CF macrophages to phagocytose and kill Pseudomonas aeruginosa.
        Am J Physiol Lung Cell Mol Physiol. 2018; 314: L432-L438
        • Aldallal N.
        • McNaughton E.E.
        • Manzel L.J.
        • et al.
        Inflammatory response in airway epithelial cells isolated from patients with cystic fibrosis.
        Am J Respir Crit Care Med. 2002; 166: 1248-1256
        • Ruffin M.
        • Roussel L.
        • Maille E.
        • et al.
        Vx-809/Vx-770 treatment reduces inflammatory response to Pseudomonas aeruginosa in primary differentiated cystic fibrosis bronchial epithelial cells.
        Am J Physiol Lung Cell Mol Physiol. 2018; 314: L635-L641
        • Adam D.
        • Bilodeau C.
        • Sognigbe L.
        • et al.
        CFTR rescue with VX-809 and VX-770 favors the repair of primary airway epithelial cell cultures from patients with class II mutations in the presence of Pseudomonas aeruginosa exoproducts.
        J Cyst Fibros. 2018; 17: 705-714
        • Gentzsch M.
        • Cholon D.M.
        • Quinney N.L.
        • et al.
        Airway epithelial inflammation in vitro augments the rescue of mutant CFTR by current CFTR modulator therapies.
        Front Pharmacol. 2021; 12: 628722
        • Rehman T.
        • Karp P.H.
        • Tan P.
        • et al.
        Inflammatory cytokines TNF-alpha and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators.
        J Clin Invest. 2021; 131: e150398
        • Xu J.
        • Livraghi-Butrico A.
        • Hou X.
        • et al.
        Phenotypes of CF rabbits generated by CRISPR/Cas9- mediated disruption of the CFTR gene.
        JCI insight. 2021; 6: e139813
        • Birket S.E.
        • Davis J.M.
        • Fernandez-Petty C.M.
        • et al.
        Ivacaftor reverses airway mucus abnormalities in a rat model harboring a humanized G551D-CFTR.
        Am J Respir Crit Care Med. 2020; 202: 1271-1282
        • Sun X.
        • Yi Y.
        • Yan Z.
        • et al.
        In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis.
        Sci Transl Med. 2019; 11: eaau7531
        • Ernst S.E.
        • Stoltz D.A.
        • Samuel M.
        • et al.
        Poster Session, poster #447: development of a G551D porcine model of cystic fibrosis.
        Pediatr Pulmonol. 2019; 54: S155-S480
        • Heltshe S.L.
        • Mayer-Hamblett N.
        • Burns J.L.
        • et al.
        Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor.
        Clin Infect Dis. 2015; 60: 703-712
        • Bessonova L.
        • Volkova N.
        • Higgins M.
        • et al.
        Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor.
        Thorax. 2018; 73: 731-740
        • Singh S.B.
        • McLearn-Montz A.J.
        • Milavetz F.
        • et al.
        Pathogen acquisition in patients with cystic fibrosis receiving ivacaftor or lumacaftor/ivacaftor.
        Pediatr Pulmonol. 2019; 54: 1200-1208
        • Harris J.K.
        • Wagner B.D.
        • Zemanick E.T.
        • et al.
        Changes in airway microbiome and inflammation with ivacaftor treatment in patients with cystic fibrosis and the G551D mutation.
        Ann Am Thorac Soc. 2020; 17: 212-220
        • Cho D.Y.
        • Lim D.J.
        • Mackey C.
        • et al.
        Ivacaftor, a cystic fibrosis transmembrane conductance regulator potentiator, enhances ciprofloxacin activity against Pseudomonas aeruginosa.
        Am J Rhinol Allergy. 2019; 33: 129-136
        • Reznikov L.R.
        • Abou Alaiwa M.H.
        • Dohrn C.L.
        • et al.
        Antibacterial properties of the CFTR potentiator ivacaftor.
        J Cyst Fibros. 2014; 13: 515-519
        • Rogers G.B.
        • Taylor S.L.
        • Hoffman L.R.
        • et al.
        The impact of CFTR modulator therapies on CF airway microbiology.
        J Cyst Fibros. 2020; 19: 359-364
        • Payne J.E.
        • Dubois A.V.
        • Ingram R.J.
        • et al.
        Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens.
        Int J Antimicrob Agents. 2017; 50: 427-435
        • Einarsson G.G.
        • Ronan N.J.
        • Mooney D.
        • et al.
        Extended-culture and culture-independent molecular analysis of the airway microbiota in cystic fibrosis following CFTR modulation with ivacaftor.
        J Cyst Fibros. 2021; 20: 747-753
        • Ronan N.J.
        • Einarsson G.G.
        • Twomey M.
        • et al.
        CORK study in cystic fibrosis: sustained improvements in Ultra-low-dose chest CT scores after CFTR modulation with ivacaftor.
        Chest. 2018; 153: 395-403
        • Yi B.
        • Dalpke A.H.
        • Boutin S.
        Changes in the cystic fibrosis airway microbiome in response to CFTR modulator therapy.
        Front Cell Infect Microbiol. 2021; 11: 548613
        • Hisert K.B.
        • Heltshe S.L.
        • Pope C.
        • et al.
        Restoring CFTR function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections.
        Am J Respir Crit Care Med. 2017; 195: 1617-1628
        • Peleg A.Y.
        • Choo J.M.
        • Langan K.M.
        • et al.
        Antibiotic exposure and interpersonal variance mask the effect of ivacaftor on respiratory microbiota composition.
        J Cyst Fibros. 2018; 17: 50-56
        • Kent L.
        • Reix P.
        • Innes J.A.
        • et al.
        Lung clearance index: evidence for use in clinical trials in cystic fibrosis.
        J Cyst Fibros. 2014; 13: 123-138
        • Ramsey K.A.
        • Foong R.E.
        • Grdosic J.
        • et al.
        Multiple breath washout outcomes are sensitive to inflammation and infection in children with cystic fibrosis.
        Ann Am Thorac Soc. 2017; 14: 1436-1442
        • Davies J.
        • Sheridan H.
        • Bell N.
        • et al.
        Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: a randomised controlled trial.
        Lancet Respir Med. 2013; 1: 630-638
        • Stylemans D.
        • Darquenne C.
        • Schuermans D.
        • et al.
        Peripheral lung effect of elexacaftor/tezacaftor/ivacaftor in adult cystic fibrosis.
        J Cyst Fibros. 2022; 21: 160-163
        • Brody A.S.
        • Sucharew H.
        • Campbell J.D.
        • et al.
        Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis.
        Am J Respir Crit Care Med. 2005; 172: 1128-1132
        • Sanders D.B.
        • Li Z.
        • Brody A.S.
        Chest computed tomography predicts the frequency of pulmonary exacerbations in children with cystic fibrosis.
        Ann Am Thorac Soc. 2015; 12: 64-69
        • McBennett K.
        • MacAskill C.J.
        • Keshock E.
        • et al.
        Magnetic resonance imaging of cystic fibrosis: multi-organ imaging in the age of CFTR modulator therapies.
        J Cyst Fibros. 2021; 21: e148-e157
        • Chassagnon G.
        • Hubert D.
        • Fajac I.
        • et al.
        Long-term computed tomographic changes in cystic fibrosis patients treated with ivacaftor.
        Eur Respir J. 2016; 48: 249-252
        • O'Neal W.K.
        • Knowles M.R.
        Cystic fibrosis disease modifiers: complex genetics defines the phenotypic diversity in a monogenic disease.
        Annu Rev Genomics Hum Genet. 2018; 19: 201-222
        • Sepahzad A.
        • Morris-Rosendahl D.J.
        • Davies J.C.
        Cystic fibrosis lung disease modifiers and their relevance in the new era of precision medicine.
        Genes (Basel). 2021; 12: 562
        • Giddings O.
        • Esther Jr., C.R.
        Mapping targetable inflammation and outcomes with cystic fibrosis biomarkers.
        Pediatr Pulmonol. 2017; 52: S21-S28
        • Perrem L.
        • Ratjen F.
        Designing clinical trials for anti-inflammatory therapies in cystic fibrosis.
        Front Pharmacol. 2020; 11: 576293
        • Mayer-Hamblett N.
        • Aitken M.L.
        • Accurso F.J.
        • et al.
        Association between pulmonary function and sputum biomarkers in cystic fibrosis.
        Am J Respir Crit Care Med. 2007; 175: 822-828
        • Sagel S.D.
        • Wagner B.D.
        • Anthony M.M.
        • et al.
        Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis.
        Am J Respir Crit Care Med. 2012; 186: 857-865
        • Khanal S.
        • Webster M.
        • Niu N.
        • et al.
        SPLUNC1: a novel marker of cystic fibrosis exacerbations.
        Eur Respir J. 2021; 58: 2000507
        • Mainz J.G.
        • Arnold C.
        • Wittstock K.
        • et al.
        Ivacaftor reduces inflammatory mediators in upper airway lining fluid from cystic fibrosis patients with a G551D mutation: serial non-invasive home-based collection of upper airway lining fluid.
        Front Immunol. 2021; 12: 642180
        • Chung J.
        • Wunnemann F.
        • Salomon J.
        • et al.
        Increased inflammatory markers detected in nasal lavage correlate with paranasal sinus abnormalities at MRI in adolescent patients with cystic fibrosis.
        Antioxidants (Basel). 2021; 10: 1412
        • Zhang S.
        • Shrestha C.L.
        • Kopp B.T.
        Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function.
        Sci Rep. 2018; 8: 17066
        • Gray R.D.
        • Hardisty G.
        • Regan K.H.
        • et al.
        Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis.
        Thorax. 2018; 73: 134-144
        • Gabillard-Lefort C.
        • Casey M.
        • Glasgow A.M.A.
        • et al.
        Trikafta rescues CFTR and lowers monocyte P2X7R-induced inflammasome activation in cystic fibrosis.
        Am J Respir Crit Care Med. 2022; 205: 783-794
        • Jarosz-Griffiths H.H.
        • Scambler T.
        • Wong C.H.
        • et al.
        Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis.
        Elife. 2020; 9: e54556
        • Bratcher P.E.
        • Rowe S.M.
        • Reeves G.
        • et al.
        Alterations in blood leukocytes of G551D-bearing cystic fibrosis patients undergoing treatment with ivacaftor.
        J Cyst Fibros. 2015; 15: 67-73
        • Hisert K.B.
        • Schoenfelt K.Q.
        • Cooke G.
        • et al.
        Ivacaftor-induced proteomic changes suggest monocyte defects may contribute to the pathogenesis of cystic fibrosis.
        Am J Respir Cell Mol Biol. 2016; 54: 594-597
        • Hisert K.B.
        • Birkland T.P.
        • Schoenfelt K.Q.
        • et al.
        Ivacaftor decreases monocyte sensitivity to interferon-gamma in people with cystic fibrosis.
        ERJ Open Res. 2020; 6
        • Sun T.
        • Sun Z.
        • Jiang Y.
        • et al.
        Transcriptomic responses to ivacaftor and prediction of ivacaftor clinical responsiveness.
        Am J Respir Cell Mol Biol. 2019; 61: 643-652
        • Hisert K.B.
        • Birkland T.P.
        • Schoenfelt K.Q.
        • et al.
        CFTR modulator therapy enhances peripheral blood monocyte contributions to immune responses in people with cystic fibrosis.
        Front Pharmacol. 2020; 11: 1219
        • Iwanaga N.
        • Kolls J.K.
        Updates on T helper type 17 immunity in respiratory disease.
        Immunology. 2019; 156: 3-8
        • Mulcahy E.M.
        • Hudson J.B.
        • Beggs S.A.
        • et al.
        High peripheral blood th17 percent associated with poor lung function in cystic fibrosis.
        PloS One. 2015; 10: e0120912
        • Westholter D.
        • Beckert H.
        • Strassburg S.
        • et al.
        Pseudomonas aeruginosa infection, but not mono or dual-combination CFTR modulator therapy affects circulating regulatory T cells in an adult population with cystic fibrosis.
        J Cyst Fibros. 2021; 20: 1072-1079
        • Ryan D.G.
        • O'Neill L.A.J.
        Krebs cycle reborn in macrophage immunometabolism.
        Annu Rev Immunol. 2020; 38: 289-313
        • Tannahill G.M.
        • Curtis A.M.
        • Adamik J.
        • et al.
        Succinate is an inflammatory signal that induces IL- 1beta through HIF-1alpha.
        Nature. 2013; 496: 238-242
        • Lampropoulou V.
        • Sergushichev A.
        • Bambouskova M.
        • et al.
        Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
        Cell Metab. 2016; 24: 158-166
        • Riquelme S.A.
        • Liimatta K.
        • Wong Fok Lung T.
        • et al.
        Pseudomonas aeruginosa Utilizes host- derived itaconate to redirect its metabolism to promote biofilm formation.
        Cell Metab. 2020; 31: 1091-1106.e6
        • Tomlinson K.L.
        • Lung T.W.F.
        • Dach F.
        • et al.
        Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation.
        Nat Commun. 2021; 12: 1399
        • Medzhitov R.
        Origin and physiological roles of inflammation.
        Nature. 2008; 454: 428-435
        • Sergeev V.
        • Chou F.Y.
        • Lam G.Y.
        • et al.
        The extrapulmonary effects of cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis.
        Ann Am Thorac Soc. 2020; 17: 147-154