Advertisement
Review Article| Volume 43, ISSUE 4, P603-615, December 2022

Update on Innate and Adaptive Immunity in Cystic Fibrosis

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Chest Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Knowles M.R.
        • Boucher R.C.
        Mucus clearance as a primary innate defense mechanism for mammalian airways.
        J Clin Invest. 2002; 109: 571-577
        • Esther Jr., C.R.
        • Muhlebach M.S.
        • Ehre C.
        • et al.
        Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis.
        Sci Transl Med. 2019; 11
        • Chen G.
        • Sun L.
        • Kato T.
        • et al.
        IL-1beta dominates the promucin secretory cytokine profile in cystic fibrosis.
        J Clin Invest. 2019; 129: 4433-4450
        • Montgomery S.T.
        • Mall M.A.
        • Kicic A.
        • et al.
        Hypoxia and sterile inflammation in cystic fibrosis airways: mechanisms and potential therapies.
        Eur Respir J. 2017; 49
        • Hoegger M.J.
        • Fischer A.J.
        • McMenimen
        • et al.
        Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis.
        Science. 2014; 345: 818-822
        • Tildy B.E.
        • Rogers D.F.
        Therapeutic options for hydrating airway mucus in cystic fibrosis.
        Pharmacology. 2015; 95: 117-132
        • van Koningsbruggen-Rietschel S.
        • Davies J.C.
        • Pressler T.
        • et al.
        Inhaled dry powder alginate oligosaccharide in cystic fibrosis: a randomised, double-blind, placebo-controlled, crossover phase 2b study.
        ERJ Open Res. 2020; 6
        • Martin S.L.
        • Saint-Criq V.
        • Hwang T.C.
        • et al.
        Ion channels as targets to treat cystic fibrosis lung disease.
        J Cyst Fibros. 2018; 17: S22-S27
        • Abou Alaiwa M.H.
        • Reznikov L.R.
        • Gansemer N.D.
        • et al.
        pH modulates the activity and synergism of the airway surface liquid antimicrobials beta-defensin-3 and LL-37.
        Proc Natl Acad Sci U S A. 2014; 111: 18703-18708
        • Rogan M.P.
        • Taggart C.C.
        • Greene C.M.
        • et al.
        Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis.
        J Infect Dis. 2004; 190: 1245-1253
        • Ghio A.J.
        • Roggli V.L.
        • Soukup J.M.
        • et al.
        Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients.
        J Cyst Fibros. 2013; 12: 390-398
        • Moskwa P.
        • Lorentzen D.
        • Excoffon K.J.
        • et al.
        A novel host defense system of airways is defective in cystic fibrosis.
        Am J Respir Crit Care Med. 2007; 175: 174-183
        • Khanal S.
        • Webster M.
        • Niu N.
        • et al.
        SPLUNC1: a novel marker of cystic fibrosis exacerbations.
        Eur Respir J. 2021; 58
        • Berkebile A.R.
        • Bartlett J.A.
        • Abou Alaiwa M.
        • et al.
        Airway Surface Liquid Has Innate Antiviral Activity That Is Reduced in Cystic Fibrosis.
        Am J Respir Cell Mol Biol. 2020; 62: 104-111
        • Tunney M.M.
        • Payne J.E.
        • McGrath S.J.
        • et al.
        Activity of hypothiocyanite and lactoferrin (ALX-009) against respiratory cystic fibrosis pathogens in sputum.
        J Antimicrob Chemother. 2018; 73: 3391-3397
        • Couroux P.
        • Farias P.
        • Rizvi L.
        • et al.
        First clinical trials of novel ENaC targeting therapy, SPX-101, in healthy volunteers and adults with cystic fibrosis.
        Pulm Pharmacol Ther. 2019; 58: 101819
        • Goss C.H.
        • Kaneko Y.
        • Khuu L.
        • et al.
        Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections.
        Sci Transl Med. 2018; 10: eaat7520
        • Goldstein W.
        • Doring G.
        Lysosomal-Enzymes from Polymorphonuclear Leukocytes and Proteinase-Inhibitors in Patients with Cystic-Fibrosis.
        Am Rev Respir Dis. 1986; 134: 49-56
        • Sagel S.D.
        • Wagner B.D.
        • Anthony M.M.
        • et al.
        Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis.
        Am J Respir Crit Care Med. 2012; 186: 857-865
        • Weldon S.
        • McNally P.
        • McAuley D.F.
        • et al.
        miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production.
        Am J Respir Crit Care Med. 2014; 190: 165-174
        • Witko-Sarsat V.
        • Halbwachs-Mecarelli L.
        • Schuster A.
        • et al.
        Proteinase 3, a potent secretagogue in airways, is present in cystic fibrosis sputum.
        Am J Respir Cell Mol Biol. 1999; 20: 729-736
        • Garratt L.W.
        • Sutanto E.N.
        • Ling K.M.
        • et al.
        Australian Respiratory Early Surveillance Team for Cystic F. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis.
        Eur Respir J. 2015; 46: 384-394
        • Harris J.K.
        • Wagner B.D.
        • Zemanick E.T.
        • et al.
        Changes in Airway Microbiome and Inflammation with Ivacaftor Treatment in Patients with Cystic Fibrosis and the G551D Mutation.
        Ann Am Thorac Soc. 2020; 17: 212-220
        • Chalmers J.D.
        • Haworth C.S.
        • Metersky M.L.
        • et al.
        Investigators W. Phase 2 Trial of the DPP-1 Inhibitor Brensocatib in Bronchiectasis.
        N Engl J Med. 2020; 383: 2127-2137
        • Shen X.B.
        • Chen X.
        • Zhang Z.Y.
        • et al.
        Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities.
        Eur J Med Chem. 2021; 225: 113818
        • Barth P.
        • Bruijnzeel P.
        • Wach A.
        • et al.
        Single dose escalation studies with inhaled POL6014, a potent novel selective reversible inhibitor of human neutrophil elastase, in healthy volunteers and subjects with cystic fibrosis.
        J Cyst Fibros. 2020; 19: 299-304
        • Mejias J.C.
        • Forrest O.A.
        • Margaroli C.
        • et al.
        Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation.
        JCI Insight. 2019; 4
        • Bogdan C.
        Nitric oxide and the immune response.
        Nat Immunol. 2001; 2: 907-916
        • Grasemann H.
        • Michler E.
        • Wallot M.
        • et al.
        Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis.
        Pediatr Pulmonol. 1997; 24: 173-177
        • Kelley T.J.
        • Drumm M.L.
        Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.
        J Clin Invest. 1998; 102: 1200-1207
        • Grasemann H.
        • Schwiertz R.
        • Matthiesen S.
        • et al.
        Increased arginase activity in cystic fibrosis airways.
        Am J Respir Crit Care Med. 2005; 172: 1523-1528
        • Grasemann H.
        • Gonska T.
        • Avolio J.
        • et al.
        Effect of ivacaftor therapy on exhaled nitric oxide in patients with cystic fibrosis.
        J Cyst Fibros. 2015;
        • Bentur L.
        • Gur M.
        • Ashkenazi M.
        • et al.
        Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection.
        J Cyst Fibros. 2020; 19: 225-231
        • Galli F.
        • Battistoni A.
        • Gambari R.
        • et al.
        Oxidative stress and antioxidant therapy in cystic fibrosis.
        Biochim Biophys Acta. 2012; 1822: 690-713
        • Veltman M.
        • De Sanctis J.B.
        • Stolarczyk M.
        • et al.
        CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells.
        Front Physiol. 2021; 12: 619442
        • Pohl C.
        • Hermanns M.I.
        • Uboldi C.
        • et al.
        Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit.
        Eur J Pharm Biopharm. 2009; 72: 339-349
        • Huang S.
        • Jornot L.
        • Wiszniewski L.
        • et al.
        Src signaling links mediators of inflammation to Cx43 gap junction channels in primary and transformed CFTR-expressing airway cells.
        Cell Commun Adhes. 2003; 10: 279-285
        • Molina S.A.
        • Stauffer B.
        • Moriarty H.K.
        • et al.
        Junctional abnormalities in human airway epithelial cells expressing F508del CFTR.
        Am J Physiol Lung Cell Mol Physiol. 2015; 309: L475-L487
        • Weiser N.
        • Molenda N.
        • Urbanova K.
        • et al.
        Paracellular permeability of bronchial epithelium is controlled by CFTR.
        Cell Physiol Biochem. 2011; 28: 289-296
        • Asgrimsson V.
        • Gudjonsson T.
        • Gudmundsson G.H.
        • et al.
        Novel effects of azithromycin on tight junction proteins in human airway epithelia.
        Antimicrob Agents Chemother. 2006; 50: 1805-1812
        • Akira S.
        • Uematsu S.
        • Takeuchi O.
        Pathogen recognition and innate immunity.
        Cell. 2006; 124: 783-801
        • Bruscia E.M.
        • Bonfield T.L.
        Cystic Fibrosis Lung Immunity: The Role of the Macrophage.
        J Innate Immun. 2016; 8: 550-563
        • Lara-Reyna S.
        • Holbrook J.
        • Jarosz-Griffiths H.H.
        • et al.
        Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations.
        Cell Mol Life Sci. 2020; 77: 4485-4503
        • Riquelme S.A.
        • Prince A.
        Pseudomonas aeruginosa Consumption of Airway Metabolites Promotes Lung Infection.
        Pathogens. 2021; 10
        • Zheng S.
        • De B.P.
        • Choudhary S.
        • et al.
        Impaired innate host defense causes susceptibility to respiratory virus infections in cystic fibrosis.
        Immunity. 2003; 18: 619-630
        • Stanton B.A.
        • Hampton T.H.
        • Ashare A.
        SARS-CoV-2 (COVID-19) and cystic fibrosis.
        Am J Physiol Lung Cell Mol Physiol. 2020; 319: L408-L415
        • Cigana C.
        • Nicolis E.
        • Pasetto M.
        • et al.
        Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells.
        Biochem Biophys Res Commun. 2006; 350: 977-982
        • Manti S.
        • Parisi G.F.
        • Papale M.
        • et al.
        Looking beyond pulmonary disease in COVID-19: A lesson from patients with cystic fibrosis.
        Med Hypotheses. 2021; 147: 110481
        • Iannitti R.G.
        • Napolioni V.
        • Oikonomou V.
        • et al.
        IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis.
        Nat Commun. 2016; 7: 10791
        • Deng J.
        • Yu X.Q.
        • Wang P.H.
        Inflammasome activation and Th17 responses.
        Mol Immunol. 2019; 107: 142-164
        • Flores-Vega V.
        • Vargas-Roldán S.
        • Lezana-Fernández J.
        • et al.
        Bacterial Subversion of Autophagy in Cystic Fibrosis.
        Front Cell Infect Microbiol. 2021; 11: 760922
        • Freedman S.D.
        • Blanco P.G.
        • Zaman M.M.
        • et al.
        Association of cystic fibrosis with abnormalities in fatty acid metabolism.
        N Engl J Med. 2004; 350: 560-569
        • Recchiuti A.
        • Mattoscio D.
        • Isopi E.
        Roles, Actions, and Therapeutic Potential of Specialized Pro-resolving Lipid Mediators for the Treatment of Inflammation in Cystic Fibrosis.
        Front Pharmacol. 2019; 10: 252
        • Yang J.
        • Eiserich J.P.
        • Cross C.E.
        • et al.
        Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients.
        Free Radic Biol Med. 2012; 53: 160-171
        • Ringholz F.C.
        • Buchanan P.J.
        • Clarke D.T.
        • et al.
        Reduced 15-lipoxygenase 2 and lipoxin A4/leukotriene B4 ratio in children with cystic fibrosis.
        Eur Respir J. 2014; 44: 394-404
        • White N.M.
        • Jiang D.
        • Burgess J.D.
        • et al.
        Altered cholesterol homeostasis in cultured and in vivo models of cystic fibrosis.
        Am J Physiol Lung Cell Mol Physiol. 2007; 292: L476-L486
        • Worgall T.S.
        Lipid metabolism in cystic fibrosis.
        Curr Opin Clin Nutr Metab Care. 2009; 12: 105-109
        • Konstan M.W.
        • VanDevanter D.R.
        • Sawicki G.S.
        • et al.
        Association of High-Dose Ibuprofen Use, Lung Function Decline, and Long-Term Survival in Children with Cystic Fibrosis.
        Ann Am Thorac Soc. 2018; 15: 485-493
        • Youssef M.
        • De Sanctis J.B.
        • Shah J.
        • et al.
        Treatment of Allergic Asthma with Fenretinide Formulation (LAU-7b) Downregulates ORMDL Sphingolipid Biosynthesis Regulator 3 (Ormdl3) Expression and Normalizes Ceramide Imbalance.
        J Pharmacol Exp Ther. 2020; 373: 476-487
        • McElvaney O.J.
        • Zaslona Z.
        • Becker-Flegler K.
        • et al.
        Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis.
        Am J Respir Crit Care Med. 2019; 200: 1381-1391
        • Grasemann H.
        • Grasemann C.
        • Kurtz F.
        • et al.
        Oral L-arginine supplementation in cystic fibrosis patients: a placebo-controlled study.
        Eur Respir J. 2005; 25: 62-68
        • Nichols D.P.
        • Ziady A.G.
        • Shank S.L.
        • et al.
        The triterpenoid CDDO limits inflammation in preclinical models of cystic fibrosis lung disease.
        Am J Physiol Lung Cell Mol Physiol. 2009; 297: L828-L836
        • Sutton M.T.
        • Fletcher D.
        • Ghosh S.K.
        • et al.
        Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment.
        Stem Cells Int. 2016; 2016: 5303048
        • Munshi A.
        • Mehic J.
        • Creskey M.
        • et al.
        A comprehensive proteomics profiling identifies NRP1 as a novel identity marker of human bone marrow mesenchymal stromal cell-derived small extracellular vesicles.
        Stem Cell Res Ther. 2019; 10: 401
        • Khan M.A.
        • Ali Z.S.
        • Sweezey N.
        • et al.
        Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation.
        Genes (Basel). 2019; 10
        • Jennings L.K.
        • Dreifus J.E.
        • Reichhardt C.
        • et al.
        Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies.
        Cell Rep. 2021; 34: 108782
        • Painter R.G.
        • Valentine V.G.
        • Lanson N.A.
        • et al.
        CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis.
        Biochemistry. 2006; 45: 10260-10269
        • Pohl K.
        • Hayes E.
        • Keenan J.
        • et al.
        A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy.
        Blood. 2014; 124: 999-1009
        • Giacalone V.D.
        • Margaroli C.
        • Mall M.A.
        • et al.
        Neutrophil Adaptations upon Recruitment to the Lung: New Concepts and Implications for Homeostasis and Disease.
        Int J Mol Sci. 2020; 21
        • Margaroli C.
        • Moncada-Giraldo D.
        • Gulick D.A.
        • et al.
        Transcriptional firing represses bactericidal activity in cystic fibrosis airway neutrophils.
        Cell Rep Med. 2021; 2: 100239
        • Konstan M.W.
        • Doring G.
        • Heltshe S.L.
        • et al.
        A randomized double blind, placebo controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis.
        J Cyst Fibros. 2014; 13: 148-155
        • Elborn J.S.
        • Konstan M.W.
        • Taylor-Cousar J.L.
        • et al.
        Empire-CF study: A phase 2 clinical trial of leukotriene A4 hydrolase inhibitor acebilustat in adult subjects with cystic fibrosis.
        J Cyst Fibros. 2021; 20: 1026-1034
        • Gillan J.L.
        • Davidson D.J.
        • Gray R.D.
        Targeting cystic fibrosis inflammation in the age of CFTR modulators: focus on macrophages.
        Eur Respir J. 2021; 57
        • Morales-Nebreda L.
        • Misharin A.V.
        • Perlman H.
        • et al.
        The heterogeneity of lung macrophages in the susceptibility to disease.
        Eur Respir Rev. 2015; 24: 505-509
        • Hubeau C.
        • Puchelle E.
        • Gaillard D.
        Distinct pattern of immune cell population in the lung of human fetuses with cystic fibrosis.
        J Allergy Clin Immunol. 2001; 108: 524-529
        • Brennan S.
        • Sly P.D.
        • Gangell C.L.
        • et al.
        Alveolar macrophages and CC chemokines are increased in children with cystic fibrosis.
        Eur Respir J. 2009; 34: 655-661
        • Schupp J.C.
        • Khanal S.
        • Gomez J.L.
        • et al.
        Single Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis.
        Am J Respir Crit Care Med. 2020;
        • del Fresno C.
        • Gomez-Pina V.
        • Lores V.
        • et al.
        Monocytes from cystic fibrosis patients are locked in an LPS tolerance state: down-regulation of TREM-1 as putative underlying mechanism.
        PLoS ONE. 2008; 3: e2667
        • Avendano-Ortiz J.
        • Llanos-Gonzalez E.
        • Toledano V.
        • et al.
        Pseudomonas aeruginosa colonization causes PD-L1 overexpression on monocytes, impairing the adaptive immune response in patients with cystic fibrosis.
        J Cyst Fibros. 2019; 18: 630-635
        • Sorio C.
        • Montresor A.
        • Bolomini-Vittori M.
        • et al.
        Mutations of Cystic Fibrosis Transmembrane Conductance Regulator Gene Cause a Monocyte-Selective Adhesion Deficiency.
        Am J Respir Crit Care Med. 2016; 193: 1123-1133
        • Hisert K.B.
        • Birkland T.P.
        • Schoenfelt K.Q.
        • et al.
        CFTR Modulator Therapy Enhances Peripheral Blood Monocyte Contributions to Immune Responses in People With Cystic Fibrosis.
        Front Pharmacol. 2020; 11: 1219
        • Jarosz-Griffiths H.H.
        • Scambler T.
        • Wong C.H.
        • et al.
        Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis.
        Elife. 2020; 9
        • Hisert K.B.
        • Birkland T.P.
        • Schoenfelt K.Q.
        • et al.
        Ivacaftor decreases monocyte sensitivity to interferon-gamma in people with cystic fibrosis.
        ERJ Open Res. 2020; 6
        • Vandivier R.W.
        • Fadok V.A.
        • Hoffmann P.R.
        • et al.
        Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis.
        J Clin Invest. 2002; 109: 661-670
        • Ma J.
        • Kummarapurugu A.B.
        • Hawkridge A.
        • et al.
        Neutrophil elastase-regulated macrophage sheddome/secretome and phagocytic failure.
        Am J Physiol Lung Cell Mol Physiol. 2021; 321: L555-L565
        • Hofer T.P.
        • Frankenberger M.
        • Heimbeck I.
        • et al.
        Decreased expression of HLA-DQ and HLA-DR on cells of the monocytic lineage in cystic fibrosis.
        J Mol Med (Berl). 2014; 92: 1293-1304
        • Xu Y.
        • Krause A.
        • Limberis M.
        • et al.
        Low sphingosine-1-phosphate impairs lung dendritic cells in cystic fibrosis.
        Am J Respir Cell Mol Biol. 2013; 48: 250-257
        • Roghanian A.
        • Drost E.M.
        • MacNee W.
        • et al.
        Inflammatory lung secretions inhibit dendritic cell maturation and function via neutrophil elastase.
        Am J Respir Crit Care Med. 2006; 174: 1189-1198
        • Mueller C.
        • Braag S.A.
        • Keeler A.
        • et al.
        Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses.
        Am J Respir Cell Mol Biol. 2011; 44: 922-929
        • Iannitti R.G.
        • Carvalho A.
        • Cunha C.
        • et al.
        Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines.
        Am J Respir Crit Care Med. 2013; 187: 609-620
        • Chan Y.R.
        • Chen K.
        • Duncan S.R.
        • et al.
        Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes.
        J Allergy Clin Immunol. 2013; 131 (1129.e1-5): 1117-1129
        • Iwanaga N.
        • Kolls J.K.
        Updates on T helper type 17 immunity in respiratory disease.
        Immunology. 2019; 156: 3-8
        • Hsu D.
        • Taylor P.
        • Fletcher D.
        • et al.
        Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation.
        Infect Immun. 2016; 84: 2410-2421
        • Rehman T.
        • Karp P.H.
        • Tan P.
        • et al.
        Inflammatory cytokines TNF-alpha and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators.
        J Clin Invest. 2021; 131
        • Hector A.
        • Schafer H.
        • Poschel S.
        • et al.
        Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection.
        Am J Respir Crit Care Med. 2015; 191: 914-923
        • McGuire J.K.
        Regulatory T cells in cystic fibrosis lung disease. More answers, more questions.
        Am J Respir Crit Care Med. 2015; 191: 866-868
        • Ideozu J.E.
        • Rangaraj V.
        • Abdala-Valencia H.
        • et al.
        Transcriptional consequences of impaired immune cell responses induced by cystic fibrosis plasma characterized via dual RNA sequencing.
        BMC Med Genomics. 2019; 12: 66
        • Mauch R.M.
        • Rossi C.L.
        • Nolasco da Silva M.T.
        • et al.
        Secretory IgA-mediated immune response in saliva and early detection of Pseudomonas aeruginosa in the lower airways of pediatric cystic fibrosis patients.
        Med Microbiol Immunol. 2019; 208: 205-213
        • Mauch R.M.
        • Rossi C.L.
        • Ribeiro J.D.
        • et al.
        Assessment of IgG antibodies to Pseudomonas aeruginosa in patients with cystic fibrosis by an enzyme-linked immunosorbent assay (ELISA).
        Diagn Pathol. 2014; 9: 158
        • Kristiansen T.A.
        • Vanhee S.
        • Yuan J.
        The influence of developmental timing on B cell diversity.
        Curr Opin Immunol. 2018; 51: 7-13
        • Moss R.B.
        Mucosal humoral immunity in cystic fibrosis - a tangled web of failed proteostasis, infection and adaptive immunity.
        EBioMedicine. 2020; 60: 103035
        • Theprungsirikul J.
        • Skopelja-Gardner S.
        • Meagher R.E.
        • et al.
        Dissociation of systemic and mucosal autoimmunity in cystic fibrosis.
        J Cyst Fibros. 2020; 19: 196-202
        • Sposito F.
        • McNamara P.S.
        • Hedrich C.M.
        Vasculitis in Cystic Fibrosis.
        Front Pediatr. 2020; 8: 585275
        • Skopelja S.
        • Hamilton B.J.
        • Jones J.D.
        • et al.
        The role for neutrophil extracellular traps in cystic fibrosis autoimmunity.
        JCI Insight. 2016; 1: e88912
        • Hovold G.
        • Lindberg U.
        • Ljungberg J.K.
        • et al.
        BPI-ANCA is expressed in the airways of cystic fibrosis patients and correlates to platelet numbers and Pseudomonas aeruginosa colonization.
        Respir Med. 2020; 170: 105994
        • Webster M.J.
        • Reidel B.
        • Tan C.D.
        • et al.
        SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration.
        Eur Respir J. 2018; 52
        • Lewis B.W.
        • Choudhary I.
        • Paudel K.
        • et al.
        The Innate Lymphoid System Is a Critical Player in the Manifestation of Mucoinflammatory Airway Disease in Mice.
        J Immunol. 2020; 205: 1695-1708
        • Fan X.
        • Rudensky A.Y.
        Hallmarks of Tissue-Resident Lymphocytes.
        Cell. 2016; 164: 1198-1211
        • Smith D.J.
        • Hill G.R.
        • Bell S.C.
        • et al.
        Reduced mucosal associated invariant T-cells are associated with increased disease severity and Pseudomonas aeruginosa infection in cystic fibrosis.
        PLoS One. 2014; 9: e109891
        • Pincikova T.
        • Paquin-Proulx D.
        • Moll M.
        • et al.
        Severely Impaired Control of Bacterial Infections in a Patient With Cystic Fibrosis Defective in Mucosal-Associated Invariant T Cells.
        Chest. 2018; 153: e93-e96
        • Raga S.
        • Julia M.R.
        • Crespi C.
        • et al.
        Gammadelta T lymphocytes from cystic fibrosis patients and healthy donors are high TNF-alpha and IFN-gamma-producers in response to Pseudomonas aeruginosa.
        Respir Res. 2003; 4: 9
        • Hagner M.
        • Albrecht M.
        • Guerra M.
        • et al.
        IL-17A from innate and adaptive lymphocytes contributes to inflammation and damage in cystic fibrosis lung disease.
        Eur Respir J. 2021; 57
        • Siegmann N.
        • Worbs D.
        • Effinger
        • et al.
        Invariant natural killer T (iNKT) cells prevent autoimmunity, but induce pulmonary inflammation in cystic fibrosis.
        Cell Physiol Biochem. 2014; 34: 56-70
        • Lindberg U.
        • Svensson L.
        • Hellmark T.
        • et al.
        Increased platelet activation occurs in cystic fibrosis patients and correlates to clinical status.
        Thromb Res. 2018; 162: 32-37
        • Ortiz-Munoz G.
        • Yu M.A.
        • Lefrancais E.
        • et al.
        Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation.
        J Clin Invest. 2020; 130: 2041-2053
        • Hoffman M.
        • Gerding J.P.
        • Zuckerman J.B.
        Stroke and myocardial infarction following bronchial artery embolization in a cystic fibrosis patient.
        J Cyst Fibros. 2017; 16: 161-162
        • Ellis S.
        • Rang C.
        • Kotsimbos T.
        • et al.
        CNS imaging studies in cystic fibrosis patients presenting with sudden neurological events.
        BMJ Open Respir Res. 2019; 6: e000456
        • Oz H.H.
        • Zhou B.
        • Voss P.
        • et al.
        Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells.
        Front Cell Infect Microbiol. 2016; 6: 167
        • Tucker S.L.
        • Sarr D.
        • Rada B.
        Granulocytic Myeloid-Derived Suppressor Cells in Cystic Fibrosis.
        Front Immunol. 2021; 12: 745326
        • Koeppen K.
        • Nymon A.
        • Barnaby R.
        • et al.
        CF monocyte-derived macrophages have an attenuated response to extracellular vesicles secreted by airway epithelial cells.
        Am J Physiol Lung Cell Mol Physiol. 2021; 320: L530-L544
        • Szul T.
        • Bratcher P.E.
        • Fraser K.B.
        • et al.
        Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes.
        Am J Respir Cell Mol Biol. 2016; 54: 359-369
        • Schwechheimer C.
        • Kuehn M.J.
        Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions.
        Nat Rev Microbiol. 2015; 13: 605-619
        • Armstrong D.A.
        • Lee M.K.
        • Hazlett H.F.
        • et al.
        Extracellular Vesicles from Pseudomonas aeruginosa Suppress MHC-Related Molecules in Human Lung Macrophages.
        Immunohorizons. 2020; 4: 508-519
        • Sutton M.T.
        • Fletcher D.
        • Episalla N.
        • et al.
        Mesenchymal Stem Cell Soluble Mediators and Cystic Fibrosis.
        J Stem Cell Res Ther. 2017; 7
        • Zulueta A.
        • Colombo M.
        • Peli V.
        • et al.
        Lung mesenchymal stem cells-derived extracellular vesicles attenuate the inflammatory profile of Cystic Fibrosis epithelial cells.
        Cell Signal. 2018; 51: 110-118
        • van Heeckeren A.M.
        • Sutton M.T.
        • Fletcher D.R.
        • et al.
        Enhancing Cystic Fibrosis Immune Regulation.
        Front Pharmacol. 2021; 12: 573065
        • Bonfield T.L.
        • Sutton M.T.
        • Fletcher D.R.
        • et al.
        Donor-defined mesenchymal stem cell antimicrobial potency against nontuberculous mycobacterium.
        Stem Cells Transl Med. 2021; 10: 1202-1216
        • Drutskaya M.S.
        • Efimov G.A.
        • Kruglov A.A.
        • et al.
        Can we design a better anti-cytokine therapy?.
        J Leukoc Biol. 2017; 102: 783-790
        • Corvol H.
        • Blackman S.M.
        • Boelle P.Y.
        • et al.
        Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis.
        Nat Commun. 2015; 6: 8382
        • Wright F.A.
        • Strug L.J.
        • Doshi V.K.
        • et al.
        Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2.
        Nat Genet. 2011; 43: 539-546
        • Dorfman R.
        • Taylor C.
        • Lin F.
        • et al.
        Members of Canadian Consortium for CFGS. Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis.
        Pediatr Pulmonol. 2011; 46: 385-392
        • Namkoong H.
        • Omae Y.
        • Asakura T.
        • et al.
        Genome-wide association study in patients with pulmonary Mycobacterium avium complex disease.
        Eur Respir J. 2021; 58
        • Darrah R.J.
        • Jacono F.J.
        • Joshi N.
        • et al.
        AGTR2 absence or antagonism prevents cystic fibrosis pulmonary manifestations.
        J Cyst Fibros. 2019; 18: 127-134
        • Graustein A.D.
        • Berrington W.R.
        • Buckingham K.J.
        • et al.
        Inflammasome Genetic Variants, Macrophage Function, and Clinical Outcomes in Cystic Fibrosis.
        Am J Respir Cell Mol Biol. 2021; 65: 157-166
        • Nourkami-Tutdibi N.
        • Freitag K.
        • Zemlin M.
        • et al.
        Genetic Association With Pseudomonas aeruginosa Acquisition in Cystic Fibrosis: Influence of Surfactant Protein D and Mannose-Binding Lectin.
        Front Immunol. 2021; 12: 587313
        • Weiler C.A.
        • Drumm M.L.
        Genetic influences on cystic fibrosis lung disease severity.
        Front Pharmacol. 2013; 4: 40